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Preface

Upon encountering this publication, one might ask the obvious question,
“Why do we need another deep learning and natural language process-
ing book?” Several excellent ones have been published, covering both
theoretical and practical aspects of deep learning and its application to
language processing. However, from our experience teaching courses on
natural language processing, we argue that, despite their excellent qual-
ity, most of these books do not target their most likely readers. The
intended reader of this book is one who is skilled in a domain other
than machine learning and natural language processing and whose work
relies, at least partially, on the automated analysis of large amounts of
data, especially textual data. Such experts may include social scientists,
political scientists, biomedical scientists, and even computer scientists
and computational linguists with limited exposure to machine learning.

Existing deep learning and natural language processing books gen-
erally fall into two camps. The first camp focuses on the theoretical
foundations of deep learning. This is certainly useful to the aforemen-
tioned readers, as one should understand the theoretical aspects of a
tool before using it. However, these books tend to assume the typical
background of a machine learning researcher and, as a consequence, I
have often seen students who do not have this background rapidly get
lost in such material. To mitigate this issue, the second type of book that
exists today focuses on the machine learning practitioner; that is, on how
to use deep learning software, with minimal attention paid to the theo-
retical aspects. We argue that focusing on practical aspects is similarly
necessary but not sufficient. Considering that deep learning frameworks
and libraries have gotten fairly complex, the chance of misusing them
due to theoretical misunderstandings is high. We have commonly seen
this problem in our courses, too.

xv



xvi Preface

This book, therefore, aims to bridge the theoretical and practical as-
pects of deep learning for natural language processing. We cover the
necessary theoretical background and assume minimal machine learning
background from the reader. Our aim is that anyone who took intro-
ductory linear algebra and calculus courses will be able to follow the
theoretical material. To address practical aspects, this book includes
pseudo code for the simpler algorithms discussed and actual Python
code for the more complicated architectures. The code should be un-
derstandable by anyone who has taken a Python programming course.
After reading this book, we expect that the reader will have the nec-
essary foundation to immediately begin building real-world, practical
natural language processing systems, and to expand their knowledge by
reading research publications on these topics.



1
Introduction

Machine learning (ML) has become a pervasive part of our lives. For
example, Pedro Domingos, a machine learning faculty member at Uni-
versity of Washington, discusses a typical day in the life of a 21st century
person, showing how she is accompanied by machine learning applica-
tions throughout the day from early in the morning (e.g., waking up
to music that the machine matched to her preferences) to late at night
(e.g., taking a drug designed by a biomedical researcher with the help
of a robot scientist) (Domingos, 2015).

Natural language processing (NLP) is an important subfield of ML.
As an example of its usefulness, consider that PubMed, a repository of
biomedical publications built by the National Institutes of Health,1 has
indexed more than one million research publications per year since 2010
(Vardakas et al., 2015). Clearly, no human reader (or team of readers)
can process so much material. We need machines to help us manage
this vast amount of knowledge. As one example out of many, an inter-
disciplinary collaboration that included our research team showed that
machine reading discovers an order of magnitude more protein signaling
pathways2 in biomedical literature than exist today in humanly-curated
knowledge bases (Valenzuela-Escárcega et al., 2018). Only 60 to 80%
of these automatically-discovered biomedical interactions are correct (a
good motivation for not letting the machines work alone!). But, without
NLP, all of these would remain “undiscovered public knowledge” (Swan-
son, 1986), limiting our ability to understand important diseases such as
cancer. Other important and more common applications of NLP include

1 https://www.ncbi.nlm.nih.gov/pubmed/
2 Protein signaling pathways “govern basic activities of cells and coordinate

multiple-cell actions”. Errors in these pathways “may cause diseases such as
cancer”. See: https://en.wikipedia.org/wiki/Cell_signaling

1

https://www.ncbi.nlm.nih.gov/pubmed/
https://en.wikipedia.org/wiki/Cell_signaling
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web search, machine translation, and speech recognition, all of which
have had a major impact in almost everyone’s life.

Since approximately 2014, the “deep learning tsunami” has hit the
field of NLP (Manning, 2015) to the point that, today, a majority of
NLP publications use deep learning. For example, the percentage of deep
learning publications at four top NLP conferences has increased from un-
der 40% in 2012 to 70% in 2017 (Young et al., 2018). There is good reason
for this domination: deep learning systems are relatively easy to build
(due to their modularity), and they perform better than many other ML
methods.3 For example, the site nlpprogress.com, which keeps track
of state-of-the-art results in many NLP tasks, is dominated by results of
deep learning approaches.

This book explains deep learning methods for NLP, aiming to cover
both theoretical aspects (e.g., how do neural networks learn?) and prac-
tical ones (e.g., how do I build one for language applications?).

The goal of the book is to do this while assuming minimal techni-
cal background from the reader. The theoretical material in the book
should be completely accessible to the reader who took linear algebra,
calculus, and introduction to probability theory courses, or who is will-
ing to do some independent work to catch up. From linear algebra, the
most complicated notion used is matrix multiplication. From calculus,
we use differentiation and partial differentiation. From probability the-
ory, we use conditional probabilities and independent events. The code
examples should be understandable to the reader who took a Python
programming course.

Starting nearly from scratch aims to address the background of what
we think will be the typical reader of this book: an expert in a discipline
other than ML and NLP, but who needs ML and NLP for her job. There
are many examples of such disciplines: the social scientist who needs
to mine social media data, the political scientist who needs to process
transcripts of political discourse, the business analyst who has to parse
company financial reports at scale, the biomedical researcher who needs
to extract cell signaling mechanisms from publications, etc. Further, we
hope this book will also be useful to computer scientists and computa-
tional linguists who need to catch up with the deep learning wave. In
general, this book aims to mitigate the impostor syndrome (Dickerson,
2019) that affects many of us in this era of rapid change in the field

3 However, they are not perfect. See Section 1.3 for a discussion.

nlpprogress.com
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of machine learning and artificial intelligence (this author certainly has
suffered and still suffers from it!4).

1.1 What this Book Covers
This book interleaves chapters that discuss the theoretical aspects of
deep learning for NLP with chapters that focus on implementing the
previously discussed theory. For the implementation chapters we will
use PyTorch, a deep learning library that is well suited for NLP appli-
cations.5

Chapter 2 begins the theory thread of the book by attempting to con-
vince the reader that machine learning is easy. We use a children’s book
to introduce key ML concepts, including our first learning algorithm.
From this example, we start building several basic neural networks. In
the same chapter, we formalize the perceptron algorithm, the simplest
neural network. In Chapter 3, we transform the perceptron into a logistic
regression network, another simple neural network that is surprisingly
effective for NLP. In Chapters 5 and 6 we generalize these algorithms
into feed forward neural networks, which operate over arbitrary combi-
nations of artificial neurons.

The astute historian of deep learning will have observed that deep
learning had an impact earlier on image processing than on NLP. For
example, in 2012, researchers at University of Toronto reported a massive
improvement in image classification when using deep learning (Krizhevsky
et al., 2012). However, it took more than two years to observe similar per-
formance improvements in NLP. One explanation for this delay is that
image processing starts from very low-level units of information (i.e.,
the pixels in the image), which are then hierarchically assembled into
blocks that are more and more semantically meaningful (e.g., lines and
circles, then eyes and ears, in the case of facial recognition). In contrast,
NLP starts from words, which are packed with a lot more semantic in-
formation than pixels and, because of that, are harder to learn from. For
example, the word house packs a lot of common-sense knowledge (e.g.,
houses generally have windows and doors and they provide shelter). Al-
though this information is shared with other words (e.g., building), a
4 Even the best of us suffer from it. Please see Kevin Knight’s description of his

personal experience involving tears (not of joy) in the introduction of this
tutorial (Knight, 2009).

5 https://pytorch.org

https://pytorch.org
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learning algorithm that has seen house in its training data will not know
how to handle the word building in a new text to which it is exposed
after training.

Chapter 8 addresses this limitation. In it, we discuss word2vec, a
method that transforms words into a numerical representation that cap-
tures (some) semantic knowledge. This technique is based on the obser-
vation that “you shall know a word by the company it keeps” (Firth,
1957); that is, it learns these semantic representations from the con-
text in which words appear in large collections of texts. Under this for-
malization, similar words such as house and building will have similar
representations, which will improve the learning capability of our neu-
ral networks. An important limitation of word2vec is that it conflates all
senses of a given word into a single numerical representation. That is, the
word bank gets a single numerical representation regardless of whether
its current context indicates a financial sense, e.g., Bank of London, or
a geological one, e.g., bank of the river.

Chapter 10 introduces sequence models for processing text. For exam-
ple, while the word book is syntactically ambiguous (i.e., it can be either
a noun or a verb), the information that it is preceded by the determiner
the in a text gives strong hints that this instance of it is a noun. In
this chapter, we cover recurrent neural network architectures designed
to model such sequences, including long short-term memory networks
and conditional random fields.

The word2vec limitation mentioned above is addressed in Chapter 12
with contextualized embeddings that are sensitive to a word’s surround-
ings. These contextualized embeddings are built using transformer net-
works that rely on “attention,” a mechanism that computes the repre-
sentation of a word using a weighted average of the representations of
the words in its context. These weights are learned and indicate how
much ”attention” each word should pay to each of its neighbors (hence
the name).

Chapter 14 discusses encoder-decoder methods (i.e., methods tailored
for NLP tasks that require the transformation of one text into another).
The most common example of such a task is machine translation, for
which the input is a sequence of words in one language, and the output
is a sequence that captures the translation of the original text in a new
language.

Chapter 16 shows how several natural language processing applica-
tions such as part-of-speech tagging, syntactic parsing, relation extrac-
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tion, question answering, and machine translation can be robustly im-
plemented using the neural architectures introduced previously.

As mentioned before, the theoretical discussion in these chapters is
interleaved with chapters that discuss how to implement these notions
in PyTorch. Chapter 4 shows an implementation of the perceptron and
logistic regression algorithms introduced in Chapters 2 and 3 for a text
classification application. Chapter 7 presents an implementation of the
feed forward neural network introduced in Chapters 5 and 6 for the
same application. Chapter 9 enhances the previous implementation of a
neural network with the continuous word representations introduced in
Chapter 8.

Chapter 11 implements a part-of-speech tagger using the recurrent
neural networks introduced in Chapter 10. Chapter 13 shows the im-
plementation of a similar part-of-speech tagger using the contextualized
embeddings generated by a transformer network. The same chapter also
shows how to use transformer networks for text classification.

Lastly, Chapter 15 implements a machine translation application using
some of the encoder-decoder methods discussed in Chapter 14.

We recommend that the reader not familiar with the Python pro-
gramming language first read Appendixes A and B for a brief overview
of the programming language and pointers on how to handle interna-
tional characters represented in Unicode in Python.

1.2 What this Book Does Not Cover
It is important to note that deep learning is only one of the many sub-
fields of machine learning. In his book, Domingos provides an intuitive
organization of these subfields into five “tribes” (Domingos, 2015):

Connectionists: This tribe focuses on machine learning methods that
(shallowly) mimic the structure of the brain. The methods de-
scribed in this book fall into this tribe.

Evolutionaries: The learning algorithms adopted by this group of ap-
proaches, also known as genetic algorithms, focus on the “sur-
vival of the fittest”. That is, these algorithms “mutate” the
“DNA“ (or parameters) of the models to be learned, and pre-
serve the generations that perform the best.

Symbolists: The symbolists rely on inducing logic rules that explain
the data in the task at hand. For example, a part-of-speech
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tagging system in this camp may learn a rule such as if previous
word is the, then the part of the speech of the next word is noun.

Bayesians: The Bayesians use probabilistic models such as Bayesian
networks. All these methods are driven by Bayes’ rule, which
describes the probability of an event.

Analogizers: The analogizers’ methods are motivated by the obser-
vation that “you are what you resemble”. For example, a new
email is classified as spam because it uses content similar to
other emails previously classified as such.

It is beyond the goal of this book to explain these other tribes in detail.
Even from the connectionist tribe, we will focus mainly on methods that
are relevant for language processing.6 For a more general description of
machine learning, the interested reader should look to other sources such
as Domingos’ book, or Hal Daumé III’s excellent Course in Machine
Learning.7

1.3 Deep Learning Is Not Perfect
While deep learning has pushed the performance of many machine learn-
ing applications beyond what we thought possible just ten years ago, it is
certainly not perfect. Gary Marcus and Ernest Davis provide a thought-
ful criticism of deep learning in their book, Rebooting AI (Marcus and
Davis, 2019). Their key arguments are:

Deep learning is opaque: While deep learning methods often learn
well, it is unclear what is learned, i.e., what the connections
between the network neurons encode. This is dangerous, as bi-
ases and bugs may exist in the models learned, and they may
be discovered only too late, when these systems are deployed
in important real-world applications such as diagnosing medical
patients, or self-driving cars.

Deep learning is brittle: It has been repeatedly shown both in the
machine learning literature and in actual applications that deep
learning systems (and for that matter most other machine learn-
ing approaches) have difficulty adapting to new scenarios they
have not seen during training. For example, self-driving cars that

6 Most of methods discussed in this book are certainly useful and commonly used
outside of NLP as well.

7 http://ciml.info

http://ciml.info
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were trained in regular traffic on US highways or large streets
do not know how to react to unexpected scenarios such as a
firetruck stopped on a highway.8

Deep learning has no common sense: An illustrative example for
this limitation is that object recognition classifiers based on
deep learning tend to confuse objects when they are rotated
in three-dimensional space, e.g., an overturned bus in the snow
is confused with a snow plow. This happens because deep learn-
ing systems lack the common-sense knowledge that some object
features are inherent properties of the category itself regardless
of the object position, e.g., a school bus in the US usually has
a yellow roof, while some features are just contingent associa-
tions, e.g., snow tends to be present around snow plows. (Most)
humans naturally use common sense, which means that we do
generalize better to novel instances, especially when they are
outliers.

All the issues raised by Marcus and Davis remain largely unsolved today.

1.4 Mathematical Notations
While we try to rely on plain language as much as possible in this book,
mathematical formalisms cannot (and should not) be avoided. Where
mathematical notations are necessary, we rely on the following conven-
tions:

• We use lower case characters such as x to represent scalar values,
which will generally have integer or real values.

• We use bold lower case characters such as x to represent arrays (or
vectors) of scalar values, and xi to indicate the scalar element at posi-
tion i in this vector. Unless specified otherwise, we consider all vectors
to be column vectors during operations such as multiplication, even
though we show them in text as horizontal. We use [x; y] to indicate
vector concatenation. For example, if x = (1, 2) and y = (3, 4), then
[x; y] = (1, 2, 3, 4).

• We use bold upper case characters such as X to indicate matrices of
scalar values. Similarly, xij points to the scalar element in the matrix
at row i and column j. xi indicates the vector corresponding to the
entire row i in matrix X.

8 https://www.teslarati.com/tesla-model-s-firetruck-crash-details/

https://www.teslarati.com/tesla-model-s-firetruck-crash-details/
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• We collectively refer to matrices of arbitrary dimensions as tensors. By
and large, in this book tensors will have dimension 1 (i.e., vectors) or
2 (matrices). Occasionally, we will run into tensors with 3 dimensions.



2
The Perceptron

This chapter covers the perceptron, the simplest neural network archi-
tecture. In general, neural networks are machine learning architectures
loosely inspired by the structure of biological brains. The perceptron is
the simplest example of such architectures: it contains a single artificial
neuron.

The perceptron will form the building block for the more compli-
cated architectures discussed later in the book. However, rather than
starting directly with the discussion of this algorithm, we will start with
something simpler: a children’s book and some fundamental observations
about machine learning. From these, we will formalize our first machine
learning algorithm, the perceptron. In the following chapters, we will
improve upon the perceptron with logistic regression (Chapter 3), and
deeper feed forward neural networks (Chapter 5).

2.1 Machine Learning Is Easy
Machine learning is easy. To convince you of this, let us read a chil-
dren’s story (Donaldson and Scheffler, 2008). The story starts with a
little monkey that lost her mom in the jungle (Figure 2.1). Luckily, the
butterfly offers to help, and collects some information about the mother
from the little monkey (Figure 2.2). As a result, the butterfly leads the
monkey to an elephant. The monkey explains that her mom is neither
gray nor big, and does not have a trunk. Instead, her mom has a “tail
that coils around trees”. Their journey through the jungle continues un-
til, after many mistakes (e.g., snake, spider), the pair end up eventually
finding the monkey’s mom, and the family is happily reunited.

In addition to the exciting story that kept at least a toddler and

9
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Figure 2.1 A wonderful children’s book that introduces the fundamentals
of machine learning: Where’s My Mom, by Julia Donaldson and Axel
Scheffler (Donaldson and Scheffler, 2008).

Little monkey: “I’ve lost my mom!”

“Hush, little monkey, don’t you cry. I’ll help you find her,” said
butterfly. “Let’s have a think, How big is she?”

“She’s big!” said the monkey. “Bigger than me.”

”Bigger than you? Then I’ve seen your mom. Come, little mon-
key, come, come, come.”

“No, no, no! That’s an elephant.”

Figure 2.2 The butterfly tries to help the little monkey find her mom,
but fails initially (Donaldson and Scheffler, 2008).

this parent glued to its pages, this book introduces several fundamental
observations about (machine) learning.

First, objects are described by their properties, also known in ma-
chine learning terminology as features. For example, we know that sev-
eral features apply to the monkey mom: isBig, hasTail, hasColor,
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numberOfLimbs, etc. These features have values, which may be Boolean
(true or false), a discrete value from a fixed set, or a number. For ex-
ample, the values for the above features are: false, true, brown (out of
multiple possible colors), and 4. As we will see soon, it is preferable to
convert these values into numbers because most of the machine learning
can be reduced to numeric operations such as additions and multiplica-
tions. For this reason, Boolean features are converted to 0 for false, and
1 for true. Features that take discrete values are converted to Boolean
features by enumerating over the possible values in the set. For exam-
ple, the color feature is converted into a set of Boolean features such as
hasColorBrown with the value true (or 1), hasColorRed with the value
false (or 0), etc.

Second, objects are assigned a discrete label, which the learning algo-
rithm or classifier (the butterfly has this role in our story) will learn how
to assign to new objects. For example, in our story we have two labels:
isMyMom and isNotMyMom. When there are two labels to be assigned
such as in our story, we call the problem at hand a binary classification
problem. When there are more than two labels, the problem becomes a
multiclass classification task. Sometimes, the labels are continuous nu-
meric values, in which case the problem at hand is called a regression
task. An example of such a regression problem would be learning to fore-
cast the price of a house on the real estate market from its properties,
e.g., number of bedrooms, and year it was built. However, in NLP most
tasks are classification problems (we will see some simple ones in this
chapter, and more complex ones starting with Chapter 10).

To formalize what we know so far, we can organize the examples the
classifier has seen (also called a training dataset) into a matrix of features
X and a vector of labels y . Each example seen by the classifier takes a
row in X, with each of the features occupying a different column. Each yi
is the label of the corresponding example xi. Table 2.1 shows an example
of a possible matrix X and label vector y for three animals in our story.

The third observation is that a good learning algorithm aggregates
its decisions over multiple examples with different features. In our story
the butterfly learns that some features are positively associated with
the mom (i.e., she is likely to have them), while some are negatively
associated with her. For example, from the animals the butterfly sees
in the story, it learns that the mom is likely to have a tail, fur, and
four limbs, and she is not big, does not have a trunk, and her color is
not gray. We will see soon that this is exactly the intuition behind the
simplest neural network, the perceptron.



12 The Perceptron

Table 2.1 An example of a possible feature matrix X (left table) and a
label vector y (right table) for three animals in our story: elephant,

snake, and monkey.

isBig hasTail hasTrunk hasColor numberOf
Brown Limbs

1 1 1 0 4
0 1 0 0 0
0 1 0 1 4

Label

isNotMyMom
isNotMyMom

isMyMom

Lastly, learning algorithms produce incorrect classifications when not
exposed to sufficient data. This situation is called overfitting, and it is
more formally defined as the situation when an algorithm performs well
in training (e.g., once the butterfly sees the snake, it will reliably clas-
sify it as not the mom when it sees in the future), but poorly on unseen
data (e.g., knowing that the elephant is not the mom did not help much
with the classification of the snake). To detect overfitting early, machine
learning problems typically divide their data into three partitions: (a)
a training partition from which the classifier learns; (b) a development
partition that is used for the internal validation of the trained classi-
fier, i.e., if it performs poorly on this dataset, the classifier has likely
overfitted; and (c) a testing partition that is used only for the final, for-
mal evaluation. Machine learning developers typically alternate between
training (on the training partition) and validating what is being learned
(on the development partition) until acceptable performance is observed.
Once this is reached, the resulting classifier is evaluated (ideally once)
on the testing partition.

2.2 Use Case: Text Classification
In the remaining of this chapter, we will begin to leave the story of
the little monkey behind us, and change to a related NLP problem,
text classification, in which a classifier is trained to assign a label to a
text. This is an important and common NLP task. For example, email
providers use binary text classification to classify emails into spam or
not. Data mining companies use multiclass classification to detect how
customers feel about a product, e.g., like, dislike, or neutral. Search
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engines use multiclass classification to detect the language a document
is written in before processing it.

Throughout the next few chapters, we will focus on text classification
for simplicity. We will consider only two labels for the next few chapters,
and we will generalize the algorithms discussed to multiclass classifica-
tion (i.e., more than two labels) in Chapter 6. After we discuss sequence
models (Chapter 10), we will introduce more complex NLP tasks such
as part-of-speech tagging and syntactic parsing.

For now, we will extract simple features from the texts to be classified.
That is, we will simply use the frequencies of words in a text as its
features. More formally, the matrix X, which stores the entire dataset,
will have as many columns as words in the vocabulary. Each cell xij

corresponds to the number of times the word at column j occurs in the
example stored at row i. For example, the text This is a great great buy
will produce a feature corresponding to the word buy with value 1, one
for the word great with value 2, etc., while the features corresponding to
all the other words in the vocabulary that do not occur in this document
receive a value of 0. This feature design strategy is often referred to as
bag of words, because it ignores all the syntactic structure of the text,
and treats the text simply as a collection of independent words. We will
revisit this simplification in Chapter 10, where we will start to model
sequences of words.

2.3 Evaluation Measures for Text Classification
The simplest evaluation measure for text classification is accuracy, de-
fined as the proportion of evaluation examples that are correctly clas-
sified. For example, the accuracy of the hypothetical classifier shown
in Table 2.2 is 3/5 = 60% because the classifier was incorrect on two
examples (rows 2 and 4).

Using the four possible outcomes for binary classification summarized
in the matrix shown in Table 2.3, which is commonly referred to as a
confusion matrix, accuracy can be more formally defined as:

Accuracy =
TP + TN

TP + FN + FP + TN
(2.1)

For example, for the classifier output shown in Table 2.2, TP = 2 (rows
1 and 5), TN = 1 (row 3), FP = 1 (row 4), and FN = 1 (row 2).

While accuracy is obviously useful, it is not always informative. In
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Table 2.2 Example output of a hypothetical classifier on five evaluation
examples and two labels: positive (+) and negative (−). The “Gold”
column indicates the correct labels for the five texts; the “Predicted”

column indicates the classifier’s predictions.

Gold Predicted

1 + +
2 + −
3 − −
4 − +
5 + +

Table 2.3 Confusion matrix showing the four possible outcomes in
binary classification, where + indicates the positive label and −

indicates the negative label.

Classifier predicted + Classifier predicted −

Gold label is + True positive (TP) False negative (FN)
Gold label is − False positive (FP) True negative (TN)

problems where the two labels are heavily unbalanced, i.e., one is much
more frequent than the other, and we care more about the less frequent
label, a classifier that is not very useful may have a high accuracy score.
For example, assume we build a classifier that identifies high-urgency
Medicaid applications,1 i.e., applications must be reviewed quickly due
to the patient’s medical condition. The vast majority of applications
are not high-urgency, which means they can be handled through the
usual review process. In this example, the positive class is assigned to
the high-urgency applications. If a classifier labels all applications as
negative (i.e., not high-urgency), its accuracy will be high because the
TN count dominates the accuracy score. For example, say that out of
1,000 applications only 1 is positive. Our classifier’s accuracy is then:

0+999
0+1+0+999 = 0.999, or 99.9%. This high accuracy is obviously misleading
in any real-world application of the classifier.
1 Medicaid is a federal and state program in the United States that helps with

medical costs for some people with limited income and resources.
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For such unbalanced scenarios, two other scores that focus on class
of interest (say, the positive class) are commonly used: precision and
recall. Precision (P) is the proportion of correct positive examples out
of all positives predicted by the classifier. Recall (R) is the proportion of
correct positive examples out of all positive examples in the evaluation
dataset. More formally:

P =
TP

TP + FP
(2.2)

R =
TP

TP + FN
(2.3)

For example, both the precision and recall of the above classifier are 0
because TP = 0 in its output. On the other hand, a classifier that pre-
dicts 2 positives, out of which only one is incorrect, will have a precision
of 1/2 = 0.5 and a recall of 1/1 = 1, which are clearly more informative
of the desired behavior.

Often it helps to summarize the performance of a classifier using a
single number. The F1 score achieves this, as the harmonic mean of
precision and recall:

F1 =
2PR

P +R
(2.4)

For example, the F1 score for the previous example is: F1 = 2×0.5×1
0.5+1 =

0.66. A reasonable question to ask here is why not use instead the sim-
pler arithmetic mean between precision and recall (P+R

2 ) to generate
this overall score? The reason for choosing the more complicated har-
monic mean is that this formula is harder to game. For example, con-
sider a classifier that labels everything as positive. Clearly, this would
be useless in the above example of classifying high-urgency Medicaid
applications. This classifier would have a recall of 1 (because it did iden-
tify all the high-urgency applications), and a precision of approximately
0 (because everything else in the set of 1,000 applications is also la-
beled as high-urgency). The simpler arithmetic mean of the two scores
is approximately 0.5, which is an unreasonably high score for a classifier
that has zero usefulness in practice. In contrast, the F1 score of this
classifier is approximately 0, which is more indicative of the classifier’s
overall performance. In general, the F1 score penalizes situations where
the precision and recall values are far apart from each other.

A more general form of the F1 score is:
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Fβ = (1 + β2)
PR

(β2P ) +R
(2.5)

where β is a positive real value, which indicates that recall is β times
more important than precision. This generalized formula allows one to
compute a single overall score for situations when precision and recall are
not treated equally. For example, in the high-urgency Medicaid example,
we may decide that recall is more important than precision. That is,
we are willing to inspect more incorrect candidates for high-urgency
processing as long as we do not miss the true positives. If we set β = 10

to indicate that we value recall as being 10 times more important than
precision, the classifier in the above example (P = 0.5 and R = 1) has
a Fβ=10 score of: Fβ=10 = 101 0.5×1

(100×0.5)+1 = 0.99, which is much closer
to the classifier’s recall value (the important measure here) than the F1

score.
We will revisit these measures in Chapter 3, where we will generalize

them to multiclass classification, i.e., to situations where the classifier
must produce more than two labels, and in Chapter 4, where we will
implement and evaluate multiple text classification algorithms.

2.4 The Perceptron
Now that we understand our first NLP task, text classification, let us
introduce our first classification algorithm, the perceptron. The percep-
tron was invented by McCulloch and Pitts (1943), and first implemented
by (Rosenblatt, 1958). Its aim was to mimic binary decisions made by a
single neuron. Figure 2.3 shows a depiction of a biological neuron,2 and
Rosenblatt’s computational simplification, the perceptron. As the figure
suggests, the perceptron is the simplest possible artificial neural network.
We will generalize from this single-neuron architecture to networks with
an arbitrary number of neurons in Chapter 5.

The perceptron has one input for each feature of an example x, and
produces an output that corresponds to the label predicted for x. Im-
portantly, the perceptron has a weight vector w, with one weight wi for
each input connection i. Thus, the size of w is equal to the number of
features, or the number of columns in X. Further, the perceptron also
2 By BruceBlaus – Own work, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=28761830

https://commons.wikimedia.org/w/index.php?curid=28761830
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Figure 2.3 A depiction of a biological neuron, which captures input stim-
uli through its dendrites and produces an activation along its axon and
synaptic terminals (left), and its computational simplification, the per-
ceptron (right).

has a bias term, b, that is scalar (we will explain why this is needed later
in this section). The perceptron outputs a binary decision, let’s say Yes
or No (e.g., Yes, the text encoded in x contains a positive review for a
product, or No, the review is negative), based on the decision function
described in Algorithm 1. The w ·x component of the decision function is
called the dot product of the vectors w and x. Formally, the dot product
of two vectors x and y is defined as:

x · y =

n∑
i=1

xiyi (2.6)

where n indicates the size of the two vectors. In words, the dot product
of two vectors, x and y, is found by adding (Σ), the values found by
multiplying each element of x with the corresponding value of y. In the
case of the perceptron, the dot product of x and w is the weighted sum
of the feature values in x, where each feature value xi is weighted by
wi. If this sum (offset by the bias term b, which we will discuss later) is
positive, then the decision is Yes. If it is negative, the decision is No.

Sidebar 2.1 The dot product in linear algebra

In linear algebra, the dot product of two vectors x and y is equivalent
to xT y, where T is the transpose operation. However, in this book we
rely on the dot product notation for simplicity.

Sidebar 2.2 The sign function in the perceptron

The decision function listed in Algorithm 1 is often shown as sign(w ·
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Algorithm 1: The decision function of the perceptron.
1 if w · x + b > 0 then
2 return Yes
3 else
4 return No
5 end

x + b), where the + sign is used to represent one class, and the − sign
the other.

There is an immediate parallel between this decision function and the
story of the little monkey. If we consider the Yes class to be isMyMom,
then we would like the weights of the features that belong to the mom
(e.g., hasColorBrown) to have positive values, so the dot product be-
tween w and the x vector corresponding to the mom turns out positive,
and the features specific to other animals (e.g., hasTrunk) to receive neg-
ative weights, so the corresponding decision is negative. Similarly, if the
task to be learned is review classification, we would like positive words
(e.g., good, great) to have positive weights in w, and negative words (e.g.,
bad, horrible) to have negative weights.

In general, we call the aggregation of a learning algorithm or classifier
and its learned parameters (w and b for the perceptron) a model. All
classifiers aim to learn these parameters to optimize their predictions
over the examples in the training dataset.

The key contribution of the perceptron is a simple algorithm that
learns these weights (and bias term) from the given training dataset. This
algorithm is summarized in Algorithm 2. Let us dissect this algorithm
next. The algorithm starts by initializing the weights and bias term
with 0s. Note that lines of pseudocode that assign values to a vector
such as line 1 in the algorithm (w = 0) assign this scalar value to all the
elements of the vector. For example, the operation in line 1 initializes
all the elements of the weight vector with zeros.

Lines 3 and 4 indicate that the learning algorithm may traverse the
training dataset more than once. As we will see in the following exam-
ple, sometimes this repeated exposure to training examples is necessary
to learn meaningful weights. Informally, we say that the algorithm con-
verged when there are no more changes to the weight vector (we will
define convergence more formally later in this section). In practice, on
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Algorithm 2: Perceptron learning algorithm.
1 w = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 d = decision(xi, w, b)
6 if d == yi then
7 continue
8 else if yi == Yes and d == No then
9 b = b+ 1

10 w = w + xi

11 else if yi == No and d == Yes then
12 b = b− 1

13 w = w − xi

14 end
15 end

real-world tasks, it is possible that true convergence is not reached, so,
commonly, line 3 of the algorithm is written to limit the number of
traversals of the training dataset (or epochs) to a fixed number.

Line 5 applies the decision function in Algorithm 1 to the current
training example. Lines 6 and 7 indicate that the perceptron simply
skips over training examples that it already knows how to classify, i.e.,
its decision d is equal to the correct label yi. This is intuitive: if the
perceptron has already learned how to classify an example, there is lim-
ited benefit in learning it again. In fact, the opposite might happen: the
perceptron weights may become too tailored for the particular examples
seen in the training dataset, which will cause it to overfit. Lines 8 – 10
address the situation when the correct label of the current training ex-
ample xi is Yes, but the prediction according to the current weights and
bias is No. In this situation, we would intuitively want the weights and
bias to have higher values such that the overall dot product plus the bias
is more likely to be positive. To move towards this goal, the perceptron
simply adds the feature values in xi to the weight vector w, and adds 1 to
the bias. Similarly, when the perceptron makes an incorrect prediction
for the label No (lines 11 – 13), it decreases the value of the weights and
bias by subtracting xi from w, and subtracting 1 from b.
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Sidebar 2.3 Error driven learning

The class of algorithms such as the perceptron that focus on “hard”
examples in training, i.e., examples for which they make incorrect predic-
tions at a given point in time, are said to perform error driven learning.

Figure 2.4 shows an intuitive visualization of this learning process.3
In this figure, for simplicity, we are ignoring the bias term and assume
that the perceptron decision is driven solely by the dot product x · w.
Figure 2.4 (a) shows the weight vector w in a simple two-dimensional
space, which would correspond to a problem that is represented using
only two features.4 In addition of w, the figure also shows the decision
boundary of the perceptron as a dashed line that is perpendicular on w.
The figure indicates that all the vectors that lie on the same side of the
decision boundary with w are assigned the label Yes, and all the vectors
on the other side receive the decision No. Vectors that lie exactly on the
decision boundary (i.e., their decision function has a value of 0) receive
the label No according to Algorithm 1. In the transition from (a) to (b),
the figure also shows that redrawing the boundary changes the decision
for x.

Why is the decision boundary line perpendicular on w, and why are
the labels so nicely assigned? To answer these questions, we need to
introduce a new formula that measures the cosine of the angle between
two vectors, cos:

cos(x, y) = x · y
||x||||y|| (2.7)

where ||x|| indicates the length of vector x, i.e., the distance between the
origin and the tip of the vector’s arrow, measured with a generalization of
Pythagoras’s theorem:5 ||x|| =

√∑N
i=1 x

2
i . The cosine similarity, which

ranges between −1 and 1, is widely used in the field of information
retrieval to measure the similarity of two vectors (Schütze et al., 2008).
That is, two perfectly similar vectors will have an angle of 0◦ between
3 This visualization was first introduced by Schütze et al. (2008).
4 This simplification is useful for visualization, but it is highly unrealistic for

real-world NLP applications, where the number of features is often proportional
with the size of a language’s vocabulary, i.e., it is often in the hundreds of
thousands.

5 Pythagoras’s theorem states that the square of the hypothenuse, c, of a right
triangle is equal to the sum of the squares of the other two sides, a and b, or,
equivalently: c =

√
a+ b. In our context, c is the length of a vector with

coordinates a and b in a two-dimensional space.
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Figure 2.4 Visualization of the perceptron learning algorithm: (a) incor-
rect classification of the vector x with the label Yes, for a given weight
vector w; and (b) x lies on the correct side of the decision boundary after
x is added to w.

them, which has the largest possible cosine value of 1. Two “opposite”
vectors have an angle of 180◦ between them, which has a cosine of −1. We
will extensively use the cosine similarity formula starting with the next
chapter. But, for now, we will simply observe that the cosine similarity
value has the same sign with the dot product of the two vectors (because
the length of a vector is always positive). Because vectors on the same
side of the decision boundary with w have an angle with w in the interval
[−90◦, 90◦], the corresponding cosine (and, thus, dot product value) will
be positive, which yields a Yes decision. Similarly, vectors on the other
side of the decision boundary will receive a No decision.

Sidebar 2.4 Hyper planes and perceptron convergence

In a one-dimensional feature space, the decision boundary for the per-
ceptron is a dot. As shown in Figure 2.4, in a two-dimensional space, the
decision boundary is a line. In a three-dimensional space, the decision
boundary is a plane. In general, for a n-dimensional space, the decision
boundary of the perceptron is a hyper plane. Classifiers such as the per-
ceptron whose decision boundary is a hyper plane, i.e., it is driven by a
linear equation in w (see Algorithm 1), are called linear classifiers.

If such a hyper plane that separates the labels of the examples in the
training dataset exists, it is guaranteed that the perceptron will find it, or
will find another hyper plane with similar separating properties (Block,
1962; Novikoff, 1963). We say that the learning algorithm has converged
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Table 2.4 The feature matrix X (left table) and label vector y (right
table) for a review classification training dataset with three examples.

# good excellent bad horrible boring

#1 1 1 1 0 0
#2 0 0 1 1 0
#3 0 0 1 0 1

Label

Positive
Negative
Negative

when such a hyper plane is found, which means that all examples in the
training data are correctly classified.

Figure 2.4 (a) shows that, at that point in time, the training example
x with label Yes lies on the incorrect side of the decision boundary.
Figure 2.4 shows how the decision boundary is adjusted after x is added
to w (line 10 in Algorithm 2). After this adjustment, x is on the correct
side of the decision boundary.

To convince ourselves that the perceptron is indeed learning a mean-
ingful decision boundary, let us go trace the learning algorithm on a
slightly more realistic example. Table 2.4 shows the matrix X and label
vector y for a training dataset that contains three examples for a product
review classification task. In this example, we assume that our vocabu-
lary has only the five words shown in X, e.g., the first data point in this
dataset is a positive review that contains the words good, excellent, and
bad.

Table 2.5 traces the learning algorithm as it iterates through the train-
ing examples. For example, because the decision function produces the
incorrect decision for the first example (No), this example is added to w.
Similarly, the second example is subtracted from w. The third example
is correctly classified (barely), so no update is necessary. After just one
pass over this training dataset, also called an epoch, the perceptron has
converged. We will let the reader convince herself that all training ex-
amples are now correctly classified. The final weights indicate that the
perceptron has learned several useful things. First, it learned that good
and excellent are associated with the Yes class, and has assigned positive
weights to them. Second, it learned that bad is not to be trusted because
it appears in both positive and negative reviews, and, thus, it assigned
it a weight of 0. Lastly, it learned to assign a negative weight to horrible.
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Table 2.5 The perceptron learning process for the dataset shown in
Table 2.4, for one pass over the training data. Both w and b are

initialized with 0s.

Example seen: #1
x · w + b = 0
Decision = Negative
Update (add): w = (1, 1, 1, 0, 0), b = 1

Example seen: #2
x · w + b = 2
Decision = Positive
Update (subtract): w = (1, 1, 0,−1, 0), b = 0

Example seen: #3
x · w + b = 0
Decision = Negative
Update: none

However, it is not perfect: it did not assign a non-zero weight to boring
because of the barely correct prediction made on example #3. There are
other bigger problems here. We discuss them in Section 2.7.

This example as well as Figure 2.4 seem to suggest that the perceptron
learns just fine without a bias term. So why do we need it? To convince
ourselves that the bias term is useful let us walk through another simple
example, shown in Table 2.6. The perceptron needs four epochs, i.e.,
four passes over this training dataset, to converge. The final parameters
are: w = (2) and b = −4. We encourage the reader to trace the learning
algorithm through this dataset on her own as well. These parameters
indicate that the hyper plane for this perceptron, which is a dot in this
one-dimensional feature space, is at 2 (because the final inequation for
the positive decision is 2x − 4 > 0). That is, in order to receive a Yes
decision, the feature of the corresponding example must have a value
> 2, i.e., the review must have at least three positive words. This is
intuitive, as the training dataset contains negative reviews that contain
one or two positive words. What this shows is that the bias term allows
the perceptron to shift its decision boundary away from the origin. It
is easy to see that, without a bias term, the perceptron would not be
able to learn anything meaningful, as the decision boundary will always
be in the origin. In practice, the bias term tends to be more useful
for problems that are modeled with few features. In real-world NLP
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Table 2.6 The feature matrix X (left table) and label vector y (right
table) for a review classification training dataset with four examples. In
this example, the only feature available is the total number of positive

words in a review.

# Number of positive words

#1 1
#2 10
#3 2
#4 20

Label

Negative
Positive
Negative
Positive

tasks that are high-dimensional, learning algorithms usually find good
decision boundaries even without a bias term (because there are many
more options to choose from).

Sidebar 2.5 Implementations of the bias term

Some machine learning software packages implement the bias term
as an additional feature in x that is always active, i.e., it has a value
of 1 for all examples in X. This simplifies the math a bit, i.e., instead
of computing x · w + b, we now have to compute just x · w. It is easy
to see that modeling the bias as an always-active feature has the same
functionality as the explicit bias term in Algorithm 2. In this book, we
will maintain an explicit bias term for clarity.

2.5 Voting Perceptron
As we saw in the previous examples, the perceptron learns well, but it
is not perfect. Often, a very simple strategy to improve the quality of
classifier is to use an ensemble model. One such ensemble strategy is to
vote between the decisions of multiple learning algorithms. For exam-
ple, Figure 2.5 shows a visualization of such a voting perceptron, which
aggregates two individual perceptrons by requiring that both classifiers
label an example as × before issuing the × label.6

6 This example was adapted from Erwin Chan’s Ling 539 course at University of
Arizona.
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Figure 2.5 An example of a binary classification task, and a voting per-
ceptron that aggregates two imperfect perceptrons. The voting algorithm
classifies correctly all the data points by requiring two votes for the ×
class to yield a × decision. The decision boundary of the voting percep-
tron is shown in red.

The figure highlights two important facts. First, the voting perceptron
performs better than either individual classifier. In general, ensemble
models that aggregate models that are sufficiently different from each
other tend to perform better than the individual (or base) classifiers
that are part of the ensemble (Dietterich, 2000). This observation holds
for people too! It has been repeatedly shown that crowds reach better
decisions than individuals. For example, in 1907, Sir Francis Galton has
observed that while no individual could correctly guess the weight of
an ox at a fair, averaging the weights predicted by all individuals came
within a pound or two of the real weight of the animal (Young, 2009).
Second, the voting perceptron is a non-linear classifier, i.e., its decision
boundary is no longer a line (or a hyper plane in n dimensions): in
Figure 2.5, the non-linear decision boundary for the voting perceptron
is shown with red lines.

While the voting approach is an easy way to produce a non-linear clas-
sifier that improves over the basic perceptron, it has drawbacks. First,
we need to produce several individual perceptron classifiers. This can be
achieved in at least two distinct ways. For example, instead of initializ-
ing the w and b parameters with 0s (lines 1 and 2 in Algorithm 2), we
initialize them with random numbers (typically small numbers centered
around 0). For every different set of initial values in w and b, the result-
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ing perceptron will end up with a different decision boundary, and, thus,
a different classifier. The drawback of this strategy is that the training
procedure must be repeated for each individual perceptron. A second
strategy for producing multiple individual perceptron that avoids this
training overhead is to keep track of all ws and bs that are produced
during the training of a single perceptron. That is, before changing the
b and w parameters in Algorithm 2 (lines 9 and 12), we store the current
values (before the change) in a list. This means that at the end of the
training procedure, this list will contain as many individual perceptrons
as the number of updates performed in training. We can even sort these
individual classifiers by their perceived quality: the more iterations a
specific b and w combination “survived” in training, the better the qual-
ity of this classifier is likely to be. This indicator of quality can be used
to assign weights to the “votes” given to the individual classifiers, or
to filter out base models of low quality (e.g., remove all classifiers that
survived fewer than 10 training examples).

The second drawback of the voting perceptron is its runtime over-
head at evaluation time. When the voting perceptron is applied on a
new, unseen example, it must apply all its individual classifiers before
voting. Thus, the voting perceptron is N times slower than the individ-
ual perceptron, where N is the number of individual classifiers used. To
mitigate this drawback, we will need the average perceptron, discussed
next.

2.6 Average Perceptron

The average perceptron is a simplification of the voting perceptron we
discussed previously. The simplification consists in that, instead of keep-
ing track of all w and b parameters created during the perceptron up-
dates like the voting algorithm, these parameters are averaged into a
single model, say avgW and avgB. This algorithm, which is summa-
rized in Algorithm 3, has a constant runtime overhead for computing
the average model, i.e., the only additional overhead compared to the
regular perceptron are the additions in lines 12 – 14 and 18 – 20, and the
divisions in lines 25 and 26. Further, the additional memory overhead
is also constant, as it maintains a single extra weight vector (totalW)
and a single bias term (totalB) during training. After training, the av-
erage perceptron uses a decision function different from the one used
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Algorithm 3: Average perceptron learning algorithm.
1 w = 0
2 b = 0
3 numbertotalOfUpdates = 0
4 totalW = 0
5 totalB = 0
6 while not converged do
7 for each training example xi in X do
8 d = decision(xi, w, b)
9 if d == yi then

10 continue
11 else if yi == Yes and d == No then
12 numberOfUpdates = numberOfUpdates + 1

13 totalW = totalW + w
14 totalB = totalB + b

15 w = w + xi

16 b = b+ 1

17 else if yi == No and d == Yes then
18 numberOfUpdates = numberOfUpdates + 1

19 totalW = totalW + w
20 totalB = totalB + b

21 w = w − xi

22 b = b− 1

23 end
24 end
25 avgB = totalB/numberOfUpdates
26 avgW = totalW/numberOfUpdates

during training. This function has a similar shape to the one listed in
Algorithm 1, but uses avgW and avgB instead.

Despite its simplicity, the average perceptron tends to perform well in
practice, usually outperforming the regular perceptron, and approaching
the performance of the voting perceptron. But why is the performance
of the average perceptron so good? After all, it remains a linear classifier
just like the regular perceptron, so it must have the same limitations.
The high-level explanation is that the average perceptron does a better
job than the regular perceptron at controlling for noise. Kahneman et al.
(2021) define noise as unwanted variability in decision making. Note that
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noise is a common occurrence in both human and machine decisions. For
example, Kahneman et al. (2021) report that judges assign more lenient
sentences if the outside weather is nice, or if their favorite football team
won their match the prior weekend. Clearly, these decisions should not
depend on such extraneous factors.

Similarly, in the machine learning space, the regular perceptron may
be exposed to such noisy, unreliable features during training. When
this happens, these features will receive weight values in the percep-
tron model (the w vector) that are all over the place, sometimes positive
and sometimes negative. All these values are averaged in the average
vector, and, thus, the average weight value for these unreliable features
will tend to be squished to (or close to) zero. The effect of this squishing
is that the decision function of the average perceptron will tend to not
rely on these features (because their contribution to the dot product in
the decision function will be minimal). This differs from the regular per-
ceptron, which does not benefit from this averaging process that reduces
the weights of unimportant features. In general, this process of squishing
the weights of features that are not important is called regularization.
We will see other regularization strategies in Chapter 6.

2.7 Drawbacks of the Perceptron
The perceptron algorithm and its variants are simple, easy to customize
for other tasks beyond text classification, and they perform fairly well
(especially in the voting and average form). However, they also have
important drawbacks. We discuss these drawbacks here, and we will
spend a good part of this book discussing solutions that address them.

The first obvious limitation of the perceptron is that, as discussed in
this chapter, it is a linear classifier. Yes, the voting perceptron removes
this constraint, but it comes at the cost of maintaining multiple indi-
vidual perceptrons. Ideally, we would like to have the ability to learn a
single classifier that captures a non-linear decision boundary. This abil-
ity is important, as many tasks require such a decision boundary. A
simple example of such a task was discussed by Minsky and Papert as
early as 1969: the perceptron cannot learn the XOR function (Minsky
and Papert, 1969). To remind ourselves, the XOR function takes two
binary variables, i.e., numbers that can take only one of two values: 0
(which stands for False) or 1 (or True), and outputs 1 when exactly
one of these values is 1, and 0 otherwise. A visualization of the XOR is
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Figure 2.6 Visualization of the XOR function operating over two vari-
ables, x and y. The dark circles indicate that the XOR output is 1; the
clear circles stand for 0.

shown in Figure 2.6. It is immediately obvious that there is no linear de-
cision boundary that separates the dark circles from the clear ones. More
importantly in our context, language is beautiful, complex, and ambigu-
ous, which means that, usually, we cannot model tasks that are driven
by language using methods of limited power such as linear classifiers.
We will address this important limitation in Chapter 5, where we will
introduce neural networks that can learn non-linear decision boundaries
by combining multiple layers of “neurons” into a single network.

A second more subtle but very important limitation of the perceptron
is that it has no “smooth” updates during training, i.e., its updates are
the same regardless of how incorrect the current model is. This is caused
by the decision function of the perceptron (Algorithm 1), which relies
solely on the sign of the dot product. That is, it does not matter how
large (or small) the value of the dot product is; when the sign is incorrect,
the update is the same: adding or subtracting the entire example xi
from the current weight vector (lines 10 and 13 in Algorithm 2). This
causes the perceptron to be a slow learner because it jumps around good
solutions. One University of Arizona student called this instability “Tony
Hawk-ing the data”.7 On data that is linearly separable, the perceptron
will eventually converge (Novikoff, 1963). However, real-world datasets
do not come with this guarantee of linear separation, which means that
this “Tony Hawk-ing” situation may yield a perceptron that is far from
acceptable. What we would like to have is a classifier that updates its
model proportionally with the errors it makes: a small mistake causes

7 Tony Hawk is an American skateboarder, famous for his half-pipe skills. See:
https://en.wikipedia.org/wiki/Tony_Hawk.

https://en.wikipedia.org/wiki/Tony_Hawk
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a small update, while a large one yields a large update. This is exactly
what the logistic regression does. We detail this in the next chapter.

The third drawback of the perceptron, as we covered it so far, is that it
relies on hand-crafted features that must be designed and implemented
by the machine learning developer. For example, in the text classifica-
tion use case introduced in Section 2.2, we mentioned that we rely on
features that are simply the words in each text to be classified. Unfortu-
nately, in real-world NLP applications feature design gets complicated
very quickly. For example, if the task to be learned is review classifica-
tion, we should probably capture negation. Certainly the phrase great
should be modeled differently than not great. Further, maybe we should
investigate the syntactic structure of the text to be classified. For exam-
ple, reviews typically contain multiple clauses, whose sentiment must be
composed into an overall classification for the entire review. For exam-
ple, the review The wait was long, but the food was fantastic. contains
two clauses: The wait was long and but the food was fantastic, each
one capturing a different sentiment, which must be assembled into an
overall sentiment towards the corresponding restaurant. Further, most
words in any language tend to be very infrequent (Zipf, 1932), which
means that a lot of the hard work we might invest in feature design
might not generalize enough. That is, suppose that the reviews included
in a review classification training dataset contain the word great but not
the word fantastic, a fairy similar word in this context. Then, any ML
algorithm that uses features that rely on explicit words will correctly
learn how to associate great with a specific sentiment, but will not know
what to do when they see the word fantastic. Chapter 8 addresses this
limitation. We will discuss methods to transform words into a numeri-
cal representation that captures (some) semantic knowledge. Under this
representation, similar words such as great and fantastic will have sim-
ilar forms, which will improve the generalization capability of our ML
algorithms.

Lastly, in this chapter we focused on text classification applications
such as review classification that require a simple ML classifier, which
produces a single binary label for an input text, e.g., positive vs. negative
review. However, many NLP applications require multiclass classification
(i.e., more than two labels), and, crucially, produce structured output.
For example, a part-of-speech tagger, which identifies which words are
nouns, verbs, etc., must produce the sequence of part of speech tags
for a given sentence. Similarly, a syntactic parser identifies syntactic
structures in a given sentence such as which phrase serves as subject for
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a given verb. These structures are typically represented as trees. The
type of ML algorithms that produce structures rather than individual
labels are said to perform structured learning. We will begin discussing
structured learning in Chapter 10.

2.8 Historical Background
The perceptron was invented by McCulloch and Pitts in 1943 (McCul-
loch and Pitts, 1943). Frank Rosenblatt provided a first software im-
plementation in 1958 (Rosenblatt, 1958), and soon after, a hardware
implementation as the “Mark I Perceptron”, a machine built for image
recognition. The Mark I Perceptron now resides at the Smithsonian In-
stitution. Interestingly enough, at the time Rosenblatt was a research
psychologist at the Cornell Aeronautical Laboratory; Warren McCulloch
was a professor of psychiatry at the University of Illinois at Chicago,
while Walter Pitts was an unofficial student of mathematics, logic, and
biology. Computer science did not exist as a formal academic discipline
at the time. The first computer science in the United States was only to
be established at Purdue University in 1962.

Following the development of the perceptron, Rosenblatt stated: “Sto-
ries about the creation of machines having human qualities have long
been a fascinating province in the realm of science fiction …Yet we are
about to witness the birth of such a machine – a machine capable of per-
ceiving, recognizing and identifying its surroundings without any human
training or control.” (Lefkowitz, 2019) Needless to say, such statements
were premature, especially considering the perceptron’s limitations as a
linear classifier, i.e., it cannot learn simple non-linear functions such as
the XOR (Minsky and Papert, 1969). This discrepancy between claims
and reality caused the first artificial intelligence “winter,” i.e., a pe-
riod of several decades during which government funding for AI was
drastically reduced. Some argue that Rosenblatt has been vindicated
by the tremendous empirical achievements of today’s neural networks
(Lefkowitz, 2019), while others have continued to argue that statements
such as Rosenblatt’s (and many other artificial intelligence researchers’)
continue to be disconnected from what today’s artificial intelligence can
actually do (Dreyfus, 1992; Marcus and Davis, 2019)

Nevertheless, regardless where one stands in this controversy, it is
clear that the perceptron and its variants (see next section) made a
tremendous contribution to machine learning and natural language pro-
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cessing, and paved the way for today’s deep learning field (as we will see
throughout the rest of this book).

2.9 References and Further Readings
The original perceptron papers where (McCulloch and Pitts, 1943) (the-
ory) and (Rosenblatt, 1958) (first implementation). Block (1962); Novikoff
(1963) demonstrated the convergence of the perceptron training algo-
rithm, i.e., if a hyper plane that separates the labels of the examples in
the training dataset exists, it is guaranteed that the perceptron will find
it, or will find another hyper plane with similar separating properties.

Minsky and Papert (1969) demonstrated the limitations of the per-
ceptron, i.e., that it cannot learn non-linear functions such as the XOR.

Despite its simplicity (or perhaps because of it), the perceptron has
been widely used and extended for various problems in machine learning
and natural language processing. For example, Duda et al. (1973) ex-
tended the original binary perceptron to multiclass classification. Cram-
mer and Singer (2003); Crammer et al. (2006) proposed a generalized
multiclass setting for the perceptron, and introduced several new train-
ing algorithms for it that have improved worst-case behavior. Collins
(2002) introduced a variant of the perceptron adapted for sequence
problems in natural language processing such as part-of-speech tagging.
Collins and Roark (2004) extended this algorithm for syntactic parsing.

2.10 Summary
This chapter presented the perceptron, one of the simplest machine
learning algorithms, which will serve as the building block for the neural
networks explored throughout the rest of the book. We also discussed a
couple of perceptron variants, starting with the voting perceptron, our
first exposure to a non-linear classifier. It was followed by the average
perceptron, which introduced regularization, i.e., reducing the impor-
tance of noisy information in the learned model.
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Logistic Regression

As mentioned in the previous chapter, the perceptron does not perform
smooth updates during training, which may slow down learning, or cause
it to miss good solutions entirely in real-world situations. In this chapter,
we will discuss logistic regression (LR), a machine learning algorithm
that elegantly addresses this problem.

3.1 The Logistic Regression Decision Function and
Learning Algorithm

As we discussed, the lack of smooth updates in the training of the per-
ceptron is caused by its reliance on a discrete decision function driven
by the sign of the dot product. The first thing LR does is replace this
decision function with a new, continuous function, which is:

decision(x,w, b) =
1

1 + e−(w·x+b)
(3.1)

The 1
1+e−x function is known as the logistic function, hence the name of

the algorithm. The logistic function belongs to a larger class of functions
called sigmoid functions because they are characterized by an S-shaped
curve. Figure 3.1 shows the curve of the logistic function. In practice,
the name sigmoid (or σ) is often used instead of logistic, which is why
the LR decision function is often summarized as: σ(w ·x+b). For brevity,
we will use the σ notation in our formulas as well.

Figure 3.1 shows that the logistic function has values that monotoni-
cally increase from 0 to 1. We will use this property to implement a bet-
ter learning algorithm, which has “soft” updates that are proportional

33
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Figure 3.1 The logistic function.

to how incorrect the current model is. To do this, we first arbitrarily
associate one of the labels to be learned with the value 1, and the other
with 0. For example, for the review classification task, we (arbitrarily)
map the positive label to 1, and the negative label to 0. Intuitively, we
would like to learn a decision function that produces values close to 1
for the positive label, and values close to 0 for the negative one. The
difference between the value produced by the decision function and the
gold value for a training example will quantify the algorithm’s confusion
at a given stage in the learning process.

Algorithm 4 lists the LR learning process that captures the above
intuitions. We will discuss later in this chapter how this algorithm was
derived. For now, let us make sure that this algorithm does indeed do
what we promised.

Note that the only new variable in this algorithm is α, known as the
learning rate. The learning rate takes a positive value that adjusts up or
down the values used during the update. We will revisit this idea later
on in this chapter. For now, let us assume α = 1.

It is easy to see that, at the extreme (i.e., when the prediction is
perfectly correct or incorrect), this algorithm reduces to the perceptron
learning algorithm. For example, when the prediction is perfectly correct
(say yi = 1 for the class associated with 1), yi is equal to d, which
means that there is no weight or bias update in lines 6 and 7. This is
similar to the perceptron (lines 6 and 7 in Algorithm 2). Further, when a
prediction is perfectly incorrect, say, yi = 1 (Yes) when d = 0 (No), this
reduces to adding xi to w and 1 to b (similar to the perceptron update,
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Algorithm 4: Logistic regression learning algorithm.
1 w = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 d = decision(xi, w, b)
6 w = w + α(yi − d)xi // yi is the correct label for example

xi

7 b = b+ α(yi − d)
8 end
9 end

lines 8 – 10 in Algorithm 2). When yi = 0 when d = 1, the algorithm
reduces to subtracting xi from w and 1 from b (similar to lines 11 – 13
in Algorithm 2).

The interesting behavior occurs in the majority of the situations when
the LR decision is neither perfectly correct nor perfectly incorrect. In
these situations, the LR performs a soft update that is proportional with
how incorrect the current decision is, which is captured by yi−d. That is,
the more incorrect the decision is, the larger the update. This is exactly
what we would like a good learning algorithm to do.

Once the algorithm finishes training, we would like to use the learned
weights (w and b) to perform binary classification, e.g., classify a text
into a positive or negative review. For this, at prediction time we will
convert the LR decision into a discrete output using a threshold τ , com-
monly set to 0.5.1 That is, if decision(x,w, b) ≥ 0.5 then the algorithm
outputs one class (say, positive review); otherwise it outputs the other
class.

3.2 The Logistic Regression Cost Function
The next three sections of this chapter focus on deriving the LR learning
algorithm shown in Algorithm 4. The reader who is averse to math,
or is satisfied with the learning algorithm and the intuition behind it,
1 Other values for this threshold are possible. For example, for applications where

it is important to be conservative with predictions for class 1, τ would take
values larger than 0.5.
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may skip to Section 3.7. However, we encourage the reader to try to
stay with us through this derivation. These sections introduce important
concepts, i.e., cost functions and gradient descent, which are necessary
for a thorough understanding of the following chapters in this book. We
will provide pointers to additional reading, where more mathematical
background may be needed.

The first observation that will help us formalize the training process
for LR is that the LR decision function implements a conditional proba-
bility, i.e., the probability of generating a specific label given a training
example and the current weights. More formally, we can write:

p(y = 1|x;w, b) = σ(x;w, b) (3.2)

The left term of the above equation can be read as the probability of
generating a label y equal to 1, given a training example x and model
weights w and b (the vertical bar “|” in the conditional probability for-
mula should be read as “given”). Intuitively, this probability is an in-
dicator of confidence (the higher the better). That is, the probability
approaches 1 when the model is confident that the label for x is 1, and
0 when not. Similarly, the probability of y being 0 is:

p(y = 0|x;w, b) = 1− σ(x;w, b) (3.3)

These probabilities form a probability distribution, i.e., the sum of
probabilities over all possible labels equals 1. Note that while we aim
to minimize the use of probability theory in this section, some of it is
unavoidable. The reader who wants to brush up on probability theory
may consult other material on this topic such as (Griffiths, 2008).

To simplify notations, because we now know that we estimate la-
bel probabilities, we change the notation for the two probabilities to:
p(1|x;w, b) and p(0|x;w, b). Further, when it is obvious what the model
weights are, we will skip them and use simply p(1|x) and p(0|x). Lastly,
we generalize the above two formulas to work for any of the two possible
labels with the following formula:

p(y|x) = (σ(x;w, b))y(1− σ(x;w, b))1−y (3.4)

It is trivial to verify that this formula reduces to one of the two equations
above, for y = 1 and y = 0.

Intuitively, we would like the LR training process to maximize the
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probability of the correct labels in the entire training dataset. This prob-
ability is called the likelihood of the data (L), and is formalized as:

L(w, b) = p(y|X) (3.5)
= Πm

i=1p(yi|xi) (3.6)

where y is the vector containing all the correct labels for all training
examples, X is the matrix that contains the vectors of features for all
training examples, and m is the total number of examples in the training
dataset. Note that the derivation into the product of individual prob-
abilities is possible because we assume that the training examples are
independent of each other, and the joint probability of multiple indepen-
dent events is equal to the product of individual probabilities (Griffiths,
2008).

A common convention in machine learning is that instead of maxi-
mizing a function during learning, we instead aim to minimize a cost
or loss function2 C, which captures the amount of errors in the model.
By definition, C must take only positive values. That is, C will have
large values when the model does not perform well, and is 0 when the
learned model is perfect. We write the logistic regression cost function
C in terms of likelihood L as:

C(w, b) = − logL(w, b) (3.7)

= −
m∑
i=1

(yi logσ(xi;w, b) + (1− yi) log(1− σ(xi;w, b))) (3.8)

Equation 3.7 is often referred to as the negative log likelihood of the
data, a descriptive term that summarizes well the content of the equa-
tion. It is easy to see that C satisfies the constraints of a cost function,
which are:

• First, the cost function must always positive. In our case, the loga-
rithm of a number between 0 and 1 is negative; the negative sign in
front of the sum turns the value of the sum into a positive number.

2 Formally, the loss function operates on a single training example, while the cost
function considers all examples in the training dataset. However, this
terminology has become more ambiguous in the literature. For this reason, we
will use “loss” and “cost” interchangeably in this book. For example, in the
theory chapters we prefer to use “cost” because we tend to apply to an entire
training set (or a partition of it). On the other hand, in the coding chapters we
will use “loss” more frequently because it matches PyTorch’s terminology.
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• Second, the cost function takes large values when the model makes
many mistakes (i.e., the likelihood of the data is small), and ap-
proaches 0 when the model is correct (i.e., the likelihood approaches
1).

Thus, we can formalize the goal of the LR learning algorithm as min-
imizing the above cost function. Next we will discuss how we do this
efficiently.

3.3 Gradient Descent
The missing component that connects the cost function just introduced
with the LR training algorithm (Algorithm 4) is gradient descent. Gra-
dient descent is an iterative method that finds the parameters that min-
imize a given function. In our context, we will use gradient descent to
find the LR parameters (w and b) that minimize the cost function C.

However, for illustration purposes, let us take a step away from the
LR cost function and begin with a simpler example: let us assume we
would like to minimize the function f(x) = (x+1)2+1, which is plotted
in Figure 3.2. Clearly, the smallest value this function takes is 1, which
is obtained when x = −1. Gradient descent finds this value by taking
advantage of the function slope, or derivative of f(x) with respect to x,
i.e., d

dxf(x). Note: if the reader needs a refresher of what function deriva-
tives are, and how to compute them, now is a good time to do so. Any
calculus textbook or even the Wikipedia page for function derivatives3
provide sufficient information for what we need in this book.

One important observation about the slope of a function is that it
indicates the function’s direction of change. That is, if the derivative is
negative, the function decreases; if it is positive, the function increases;
and if it is zero, we have reached a local minimum or maximum for
the function. Let us verify that is the case for our simple example. The
derivative of our function d

dx ((x+1)2+1) is 2(x+1), which has negative
values when x < −1, positive values when x > −1, and is 0 when
x = −1. Intuitively, gradient descent uses this observation to take small
steps towards the function’s minimum in the opposite direction indicated
by the slope. More formally, gradient descent starts by initializing x

with some random value, e.g., x = −3, and then repeatedly subtracts a
quantity proportional with the derivative from x, until it converges, i.e.,
3 https://en.wikipedia.org/wiki/Derivative

https://en.wikipedia.org/wiki/Derivative
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Figure 3.2 Plot of the function f(x) = (x+ 1)2 + 1.

it reaches a derivative of 0 (or close enough so we can declare success).
That is, we repeatedly compute:

x = x− α
d

dx
f(x) (3.9)

until convergence.

Sidebar 3.1 Partial derivative notation

In this book we use the Leibniz notation for derivatives. That is, d
dxf

indicates the derivative of function f with respect to x, i.e., the amount
of change in f in response to an infinitesimal change in x. This notation
is equivalent to the Lagrange notation (sometimes attributed to Newton)
of f ′(x).

α in the above equation is the same learning rate introduced before
in this chapter. Let us set α = 0.1 for this example. Thus, in the first
gradient descent iteration, x changes to x = −3−0.1×2(−3+1) = −2.6.
In the second iteration, x becomes x = −2.6−0.1×2(−2.6+1) = −2.28.
And so on, until, after approximately 30 iterations, x approaches −1.001,
a value practically identical to what we were looking for.

This simple example also highlights that the learning rate α must
be positive (so we don’t change the direction indicated by the slope),
and small (so we do not “Tony Hawk” the data). To demonstrate the
latter situation, consider the situation when α = 1. In this case, in
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the first iteration x becomes 1, which means we already skipped over
the value that yields the function’s minimum (x = −1). Even worse,
in the second iteration, x goes back to −3, and we are now in danger
of entering an infinite loop! To mitigate this situation, α usually takes
small positive values, say, between 0.00001 and 0.1. In Chapter 6 we
will discuss other strategies to dynamically shrink the learning rate as
the learning advances, so we further reduce our chance of missing the
function’s minimum.

The gradient descent algorithm generalizes to functions with multi-
ple parameters: we simply update each parameter using its own partial
derivative of the function to be minimized. For example, consider a new
function that has two parameters, x1 and x2: f(x1, x2) = (x1 + 1)2 +

3x2+1. For this function, in each gradient descent iteration, we perform
the following updates:

x1 = x1 − α
d

dx1
f(x1, x2) = x1 − 0.1(2x1 + 2)

x2 = x2 − α
d

dx2
f(x1, x2) = x2 − 0.1(3)

or, in general, for a function f(x), we update each parameter xi using
the formula:

xi = xi − α
d

dxi
f(x) (3.10)

One obvious question that should arise at this moment is why are we
not simply solving the equation where the derivative equals 0, as we were
taught in calculus? For instance, for the first simple example we looked
at, f(x) = (x+1)2+1, zeroing the derivative yields immediately the exact
solution x = −1. While this approach works well for functions with a
single parameter or two, it becomes prohibitively expensive for functions
with four or more parameters. Machine learning in general falls in this
latter camp: it is very common that the functions we aim to minimize
have thousands (or even millions) of parameters. In contrast, as we will
see later, gradient descent provides a solution whose runtime is linear
in the number of parameters times the number of training examples.
Further, in some situations, training data is not available ahead of time,
but, instead, is provided sequentially, i.e., a few examples at a time.
This type of machine learning is called online learning. For example,
the reviews necessary to train a review classifier might not be available
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Figure 3.3 Plot of the function f(x) = x sin(x)2 + 1.

ahead of time, but come in over time as buyers review products. Gradient
descent is well suited for online learning because it operates on one (or
a few) training examples at a time.

It is important to note that gradient descent is not perfect. It does
indeed work well for convex functions, i.e., functions that have exactly
one minimum and are differentiable at every point such as our simple
example, but it does not perform so well in more complex situations.
Consider for example the function shown in Figure 3.3.4 This functions
has two minima (around x = 3 and x = −2). Because gradient descent
is a “greedy” algorithm, i.e., it commits to a solution relying only on
local knowledge without understanding the bigger picture, it may end
up finding a minimum that is not the best. For example, if x is initialized
with 2.5, gradient descent will follow the negative slope at that position,
and end up discovering the minimum around x = 3, which is not the
best solution. However, despite this known limitation, gradient descent
works surprisingly well in practice.

Now that we have a general strategy for finding the parameters that
minimize a function, let us apply it to the problem we care about in this
chapter, that is, finding the parameters w and b that minimize the cost
function C(w, b) (Equation 3.8). A common source of confusion here is
that the parameters of C are w and b, not x and y. For a given training
example, x and y are known and constant. That is, we know the values of
the features and the label for each given example in training, and all we
4 This example of a function with multiple minima taken from

https://en.wikipedia.org/wiki/Derivative.

https://en.wikipedia.org/wiki/Derivative
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have to do is compute w and b. Thus, the training process of LR reduces
to repeatedly updating each wj in w and b features by the corresponding
partial derivative of C:

wj = wj − α
d

dwj
C(w, b) (3.11)

b = b− α
d

db
C(w, b) (3.12)

Assuming a sufficient number of iterations, and a learning rate α that
is not too large, w and b are guaranteed to converge to the optimal
values because the logistic regression cost function is convex.5 However,
one problem with this approach is that computing the two partial deriva-
tives requires the inspection of all training examples (this is what the
summation in Equation 3.8 indicates), which means that the learning
algorithm would have to do many passes over the training dataset be-
fore any meaningful changes are observed. Because of this, in practice,
we do not compute C over the whole training data, but over a small
number of examples at a time. This small group of examples is called a
mini batch. In the simplest case, the size of the mini batch is 1, i.e., we
update the w and b weights after seeing each individual example i, using
a cost function computed for example i alone:6

Ci(w, b) = −(yi logσ(xi;w, b) + (1− yi) log(1− σ(xi;w, b))) (3.13)

This simplified form of gradient descent is called stochastic gradient
descent (SGD), where “stochastic” indicates that we work with a stochas-
tic approximation (or an estimate) of C. Building from the last three
equations above, we can write the logistic regression training algorithm
as shown in Algorithm 5. The reader will immediately see that this for-
mulation of the algorithm is similar to Algorithm 4, which we introduced
at the beginning of this chapter. In the next section, we will demonstrate
that these two algorithms are indeed equivalent, by computing the two
partial derivatives d

dwj
Ci(w, b) and d

dbCi(w, b).

5 Demonstrating that the LR cost function is convex is beyond the scope of this
book. The interested reader may read other materials on this topic such as
http://mathgotchas.blogspot.com/2011/10/
why-is-error-function-minimized-in.html.

6 Technically, Ci is a loss function because it applies to a single data point.
However, we will continue to use the term “cost function” for readability.

http://mathgotchas.blogspot.com/2011/10/why-is-error-function-minimized-in.html
http://mathgotchas.blogspot.com/2011/10/why-is-error-function-minimized-in.html
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Algorithm 5: Logistic regression learning algorithm using
stochastic gradient descent.

1 w = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 for each wj in w do
6 wj = wj − α d

dwj
Ci(w, b)

7 end
8 b = b− α d

dbCi(w, b)

9 end
10 end

3.4 Deriving the Logistic Regression Update Rule
Here we will compute the partial derivative of the cost function Ci(w, b)

of an individual example i, with respect to each feature weight wj and
bias term b. For these operations we will rely on several rules to compute
the derivatives of a few necessary functions. These rules are listed in
Table 3.1.

Let us start with the derivative of C with respect to one feature weight
wj :

d

dwj
Ci(w, b) =

d

dwj
(−yi logσ(xi;w, b)− (1− yi) log(1− σ(xi;w, b)))

Let us use σi to denote σ(xi;w, b) below, for simplicity:

=
d

dwj
(−yi logσi − (1− yi) log(1− σi))

Pulling out the yi constants and then applying the chain rule on the two
logarithms:

= −yi
d

dσi
logσi

d

dwj
σi − (1− yi)

d

d(1− σi)
log(1− σi)

d

dwj
(1− σi)

After applying the derivative of the logarithm:

= −yi
1

σi

d

dwj
σi − (1− yi)

1

1− σi

d

dwj
(1− σi)
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After applying the chain rule on d
dwj

(1− σi):

= −yi
1

σi

d

dwj
σi + (1− yi)

1

1− σi

d

dwj
σi

= (−yi
1

σi
+ (1− yi)

1

1− σi
)

d

dwj
σi

=
−yi(1− σi) + (1− yi)σi

σi(1− σi)

d

dwj
σi

=
σi − yi

σi(1− σi)

d

dwj
σi

After applying the chain rule on σi:

=
σi − yi

σi(1− σi)

d

d(w · xi + b)
σi

d

dwj
(w · xi + b)

After the derivative of the logistic function and then canceling numerator
and denominator:

=
σi − yi

σi(1− σi)
σi(1− σi)

d

dwj
(w · xi + b)

= (σi − yi)
d

dwj
(w · xi + b)

Lastly, after applying the derivative of the dot product:

= (σi − yi)xij (3.14)

where xij is the value of feature j in the feature vector xi.
Following a similar process, we can compute the derivative of Ci with

respect to the bias term as:
d

db
Ci(w, b) =

d

db
(−yi logσ(xi;w, b)− (1− yi) log(1− σ(xi;w, b))) = σi − yi

(3.15)

Knowing that σi is equivalent with decision(xi, w, b), one can immedi-
ately see that applying Equation 3.15 in line 8 of Algorithm 5 transforms
the update of the bias into the form used in Algorithm 4 (line 7). Sim-
ilarly, replacing the partial derivative in line 6 of Algorithm 5 with its
explicit form from Equation 3.14 yields an update equivalent with the
weight update used in Algorithm 4. The superficial difference between
the two algorithms is that Algorithm 5 updates each feature weight wj

explicitly, whereas Algorithm 4 updates all weights at once by updating
the entire vector w. Needless to say, these two forms are equivalent. We
prefer the explicit description in Algorithm 5 for clarity. But, in practice,
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Figure 3.4 Multiclass logistic regression.

one is more likely to implement Algorithm 4 because vector operations
are efficiently implemented in most machine learning software libraries.

3.5 From Binary to Multiclass Classification
So far, we have discussed binary logistic regression, where we learned
a classifier for two labels (1 and 0), where the probability of predicting
label 1 is computed as: p(1|x;w, b) = σ(x;w, b) and probability of label
0 is: p(0|x;w, b) = 1 − p(1|x;w, b) = 1 − σ(x;w, b). However, there are
many text classification problems where two labels are not sufficient.
For example, we might decide to implement a movie review classifier
that produces five labels, to capture ratings on a five-star scale. To ac-
commodate this class of problems, we need to generalize the binary LR
algorithm to multiclass scenarios, where the labels to be learned may
take values from 1 to k, where k is the number of classes to be learned,
e.g., 5 in the previous example.

Figure 3.4 provides a graphical explanation of the multiclass LR. The
key observation is that now, instead of maintaining a single weight vector
w and bias b, we maintain one such vector and bias term for each class
to be learned. This complicates our notations a bit: instead of using a
single index to identify positions in an input vector x or in w, we now
have to maintain two. That is, we will use wi to indicate the weight
vector for class i, wij to point to the weight of the edge that connects
the input xj to the class i, and bi to indicate the bias term for class i.
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The output of each “neuron” i in the figure produces a score for label i,
defined as the sum between the bias term of class i and the dot product
of the weight vector for class i and the input vector. More formally, if
we use zi to indicate the score for label i, then: zi = wi · x + bi.

Note that these scores are not probabilities: they are not bounded
between 0 and 1, and they will not sum up to 1. To turn them into
probabilities, we are introducing a new function, called softmax, which
produces probability values for the k classes. For each class i, softmax
defines the corresponding probability as:

p(y = i|x;W, b) = p(i|x;W, b) = ezi∑k
j=1 e

zj
=

ewi·x+bi∑k
j=1 e

wj ·x+bj
(3.16)

where the W matrix stores all w weight vectors, i.e., row i in W stores
the weight vector wi for class i, and the b vector stores all bias values,
i.e., bi is the bias term for class i.

Clearly, the softmax function produces probabilities: (a) the exponent
function used guarantees that the softmax values are positives, and (b)
the denominator, which sums over all the k classes guarantees that the
resulting values are between 0 and 1, and sum up to 1. Further, with
just a bit of math, we can show that the softmax for two classes reduces
to the logistic function. Using the softmax formula, the probability of
class 1 in a two-class LR (using labels 1 and 0) is:

p(1|x;W, b) = ew1·x+b1

ew0·x+b0+ew1·x+b1
= 1

ew0·x+b0

ew1·x+b1
+1

= 1
e−((w1−w0)·x+(b1−b0))+1

(3.17)

Using a similar derivation, which we leave as an at-home exercise to the
curious reader, the probability of class 0 is:

p(0|x;W, b) = ew0·x+b0

ew0·x+b0+ew1·x+b1
= e−((w1−w0)·x+(b1−b0))

e−((w1−w0)·x+(b1−b0))+1

= 1− p(1|x;W, b) (3.18)

From these two equations, we can immediately see that two the formula-
tions of binary LR, i.e., logistic vs. softmax, are equivalent when we set
the parameters of the logistic to be equal to the the difference between
the parameters of class 1 and the parameters of class 0 in the softmax
formulation, or w = w1 − w0, and b = b1 − b0, where w and b are the
logistic parameters in Equations 3.17 and 3.18.
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The cost function for multiclass LR follows the same intuition and for-
malization as the one for binary LR. That is, during training we want to
maximize the probabilities of the correct labels assigned to training ex-
amples, or, equivalently, we want to minimize the negative log likelihood
of the data. Similarly to Equation 3.7, the cost function for multiclass
LR is defined as:

C(W, b) = − logL(W, b) = −
m∑
i=1

log p(yi|xi;W, b) (3.19)

or, for a single training example i:

Ci(W, b) = − log p(yi|xi;W, b) (3.20)

where yi is the correct label for training example i, and xi is the fea-
ture vector for the same example. The probabilities in this cost function
are computed using the softmax formula, as in Equation 3.16. This cost
function, which generalizes the negative log likelihood cost function to
multiclass classification, is called cross entropy. Its form for binary clas-
sification is called binary cross entropy. Using Equations 3.17 and 3.18,
it is easy to show that in the case of binary logistic regression, Equa-
tion 3.19 is equivalent with our initial cost function from Equation 3.8.
These are probably the most commonly used cost function in NLP prob-
lems. We will see them a lot throughout the book.

The learning algorithm for multiclass LR stays almost the same as
Algorithm 5, with small changes to account for the different cost func-
tion and the larger number of parameters, i.e., we now update a matrix
W instead of a single vector w, and a vector b instead of the scalar b.
The adjusted algorithm is shown in Algorithm 6. We leave the compu-
tation of the derivatives used in Algorithm 6 as an at-home exercise for
the interested reader. However, as we will see in the next chapter, we
can now rely on automatic differentiation libraries such as PyTorch to
compute these derivatives for us, so this exercise is not strictly needed
to implement multiclass LR.

3.6 Evaluation Measures for Multiclass Text
Classification

Now that we generalized our classifier to operate over an arbitrary num-
ber of classes, it is time to generalize the evaluation measures introduced
in Section 2.3 to multiclass problems as well. Throughout this section,
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Algorithm 6: Learning algorithm for multiclass logistic regres-
sion.

1 W = 0
2 b = 0
3 while not converged do
4 for each training example xi in X do
5 for each wjk in W do
6 wjk = wjk − α d

dwjk
Ci(W, b)

7 end
8 for each bj in b do
9 bj = bj − α d

dbj
Ci(W, b)

10 end
11 end
12 end

Table 3.2 Example of a confusion matrix for three-class classification.
The dataset contains 1,000 data points, with 2 data points in class C1,

100 in class C2, and 898 in class C3.

Classifier Classifier Classifier
predicted C1 predicted C2 predicted C3

Gold label is C1 1 1 0
Gold label is C2 10 80 10
Gold label is C3 1 7 890

we will use as a walkthrough example a three-class version of the Med-
icaid application classification problem from Section 2.3. In this ver-
sion, our classifier has to assign each application to one of three classes,
where classes C1 and C2 indicate the high- and medium-priority appli-
cations, and class C3 indicate regular applications that do not need to
be rushed through the system. Same as before, most applications fall
under class C3. Table 3.2 shows an example confusion matrix for this
problem for a hypothetical three-class classifier that operates over an
evaluation dataset that contains 1,000 applications.

The definition of accuracy remains essentially the same for multiclass
classification, i.e., accuracy is the ratio of data points classified correctly.
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In general, the number of correctly classified points can be computed
by summing up the counts on the diagonal of the confusion matrix.
For example, for the confusion matrix shown in Table 3.2, accuracy is
1+80+890

1,000 = 971
1,000 .

Similarly, the definitions of precision and recall for an individual class
c, remain the same:

Pc =
TPc

TPc + FPc
(3.21)

Rc =
TPc

TPc + FNc
(3.22)

where TPc indicate the number of true positives for class c, FPc indicate
the number of positives for class c, and FNc indicate the number of false
negatives for the same class. However, because we now have more than
two rows and two columns in the confusion matrix, we have to do a bit
more additional math to compute the FPc and FNc counts. In general,
the number of false positives for a class c is equal to the sum of the
counts in the column corresponding to class c, excluding the element on
the diagonal. The number of of false negatives for a class c is equal to
the sum of the counts in the corresponding row, excluding the element
on the diagonal. For example, for class C2 in the table, the number of
true positives is TPC2 = 80, the number of false positives is FPC2 =

1 + 7 = 8, and the number of false negatives is FNC2 = 10 + 10 = 20.
Thus, the precision and recall for class C2 are: PC2 = 80

80+8 = 0.91, and
RC2 = 80

80+20 = 0.80. We leave it as an at-home exercise to show that
PC1 = 0.08, RC1 = 0.5, PC3 = 0.99, and RC3 = 0.99. From these values,
one can trivially compute the respective F scores per class.

The important discussion for multiclass classification is how to average
these sets of precision/recall scores into single values that will give us
a quick understanding of the classifier’s performance? There are two
strategies to this end, both with advantages and disadvantages:

Macro averaging: Under this strategy we simply average all the in-
dividual precision/recall scores into a single value. For example, for
the above example, the macro precision score over all three classes is:
macro P = PC1+PC2+PC3

3 = 0.08+0.91+0.99
3 = 0.66. Similarly, the macro

recall score is: macro R = RC1+RC2+RC3

3 = 0.50+0.80+0.99
3 = 0.76. The

macro F1 score is the harmonic mean of the macro precision and recall
scores.

As discussed in Section 2.3, in many NLP tasks the labels are highly
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unbalanced, and we commonly care less about the most frequent la-
bel. For example, here we may want to measure the performance of our
classifier on classes C1 and C2, which require rushed processing in the
Medicaid system. In such scenarios, the macro precision and recall scores
exclude the frequent class, e.g., C3 in our case. Thus, the macro preci-
sion becomes: macro P = PC1+PC2

2 = 0.08+0.91
2 = 0.50, which is more

indicative of the fact that our classifier does not perform too well on the
two important classes in this example.

The advantage of the macro scores is that they treat all the classes we
are interested in as equal contributors to the overall score. But, depend-
ing on the task, this may also be a disadvantage. For example, in the
above example, the latter macro precision score of 0.50 hides the fact
that our classifier performs reasonably well on the C2 class (PC2 = 0.91),
which is 100 times more frequent than C1 in the data!

Micro averaging: This strategy addresses the above disadvantage of
macro averaging, by computing overall precision, recall, and F scores
where each class contributes proportionally with its frequency in the
data. In particular, rather than averaging the individual precision/recall
scores, we compute them using the class counts directly. For example,
the micro precision and recall scores for the two classes of interest in the
above example, C1 and C2, are:

micro P = TPC1+TPC2

TPC1+TPC2+FPC1+FPC2

= 1+80
1+80+11+8 = 0.81 (3.23)

micro R = TPC1+TPC2

TPC1+TPC2+FNC1+FNC2

= 1+80
1+80+1+20 = 0.79 (3.24)

Similar to macro averaging, the micro F1 score is computed as the har-
monic mean of the micro precision and recall scores.

Note that in this example, the micro scores are considerably higher
than the corresponding macro scores because: (a) the classifier’s perfor-
mance on the more frequent C2 class is higher than the performance
on class C1, and (b) micro averaging assigns more importance to the
frequent classes, which, in this case, raises the micro precision and re-
call scores. The decision of which averaging strategy to use is problem
specific, and depends on the answer to the question: should all classes
be treated equally during scoring, or should they be weighted by their
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frequency in the data? In the former case, the appropriate averaging is
macro; in the latter, micro.

3.7 Drawbacks of Logistic Regression

The logistic regression algorithm solves the lack of smooth updates in
the perceptron algorithm through its improved update functions on its
parameters. This seemingly small change has an important practical im-
pact: in most NLP applications, logistic regression tends to outperform
the perceptron.

However, the other drawbacks observed with the perceptron still hold.
Binary logistic regression is also a linear classifier because its deci-
sion boundary remains a hyperplane. It is tempting to say that the
above statement is not correct because the logistic is clearly a non-
linear function. However, the linearity of the binary LR classifier is easy
to prove with just a bit of math. Remember that the decision function
for the binary LR is: if 1

1+e−(w·x+b) ≥ 0.5 we assign one label, and if
1

1+e−(w·x+b) < 0.5 we assign the other label. Thus, the decision boundary
is defined by the equation 1

1+e−(w·x+b) = 0.5. From this we can easily de-
rive that e−(w·x+b) = 1, and −(w · x+ b) = 0, where the latter is a linear
function on the parameters w and b. This observation generalizes to the
multiclass logistic regression introduced in Section 3.5. In the multiclass
scenario, the decision boundary between all classes consists of multi-
ple intersecting segments, each of which are fragments of a hyperplane.
Figure 3.5 shows an example of such a decision boundary for a 4-class
problem, where each data point is described by two features: x1 and x2.7
Clearly, forcing these segments to be linear reduces what the multiclass
logistic regression can learn.

Further, similar to the perceptron, the LR covered so far relies on
hand-crafted features, which, as discussed in the previous chapter, may
be cumbersome to generate and may generalize poorly. Lastly, logistic
regression also focuses on individual predictions rather than structured
learning. We will address all these limitations in the following chapters.
We will start by introducing non-linear classifiers in Chapter 5.

7 This figure was generated by Clayton Morrison and is reproduced with
permission.
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Figure 3.5 Example of a two-dimensional decision boundary for a 4-class
logistic regression classifier.

3.8 Historical Background

The logistic function was discovered twice (see (Cramer, 2002) for a
fascinating history). In brief, Pierre François Verhulst introduced the
logistic function (with this name) in the 19th century in the context of
estimating population growth (Verhulst, 1838, 1845). Pearl and Reed
rediscovered the logistic function in a 1920 study of population growth
in the United States (Pearl and Reed, 1920). They seemed to have been
unaware of Verhulst’s precedent. In a followup publication, Reed, who
was trained as a mathematician and biostatistician, applied the logistic
function to autocatalytic reactions (Reed and Berkson, 1929). Once the
repeated discovery was identified, Verhulst was rightfully credited for
both the formula and the name (Yule, 1925).

The gradient descent algorithm we used to train the logistic regression
classifier in this chapter was also discovered multiple times through his-
tory (Kelley, 1960; Dreyfus, 1990, 1962, inter alia). We will revisit this
history in Chapter 5, where we will introduce a generalization of this
algorithm to networks with an arbitrary number of neurons.
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3.9 References and Further Readings
Because of its ubiquity, logistic regression is described in many statis-
tics and machine learning books and courses. The one that helped us
the most is Andrew Ng’s CS229 Machine Learning course at Stanford
University (Ng, 2019).

3.10 Summary
This chapter introduced logistic regression, which improves upon the
perceptron by performing soft updates during training, i.e., each pa-
rameter is updated based on its contribution to an incorrect decision.
We also extended the vanilla logistic regression, which was designed for
binary classification, to handle multiclass classification.

Through logistic regression, we introduced the concept of cost function
(i.e., the function we aim to minimize during training), and gradient
descent, the algorithm that implements this minimization procedure.



4
Implementing Text Classification Using Logistic

Regression

In the previous chapters we have discussed the theory behind the per-
ceptron and logistic regression, including mathematical explanations of
how and why they are able to learn from examples. In this chapter we
will transition from math to code. Specifically, we will discuss how to
implement these models in the Python programming language. All the
code that we will introduce throughout this book is available in this
GitHub repository as well: https://github.com/clulab/gentlenlp.
The reader who is not familiar with the Python programming language
is encouraged to read first Appendix A, for a brief introduction to the
language, and Appendix B, for a discussion on how computers encode
and preprocess text. Once done, please return here.

To get a better understanding of how these algorithms work under
the hood, we will start by implementing them from scratch. However,
as the book progresses, we will introduce some of the popular tools and
libraries that make Python the language of choice for machine learning,
e.g., PyTorch,1 and Hugging Face’s transformers.2

The code for all the examples in the book is provided in the form of
Jupyter notebooks.3 Fragments of these notebooks will be presented in
the implementation chapters so that the reader has the whole picture just
by reading the book. However, we strongly encourage you to download
the notebooks and execute them yourself. We also encourage you to
modify them to conduct your own experiments!

1 https://pytorch.org
2 https://huggingface.co
3 https://jupyter.org/
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4.1 Binary Classification
We begin this chapter with binary classification. That is, we aim to
train classifiers that assign one of two labels to a given text. As the
example for this task, we will train a review classifier using the the
Large Movie Review Dataset (Maas et al., 2011).4 We tackle this task
by implementing first a binary perceptron classifier, followed by a binary
logistic regression one. We will implement the latter both from scratch
as well as using PyTorch, so the reader has a clearer understanding on
how PyTorch works “under the hood.”

4.1.1 Large Movie Review Dataset
This dataset contains movie reviews and their associated scores (between
1 and 10) as provided by IMDb.5 Maas et al. converted these scores to
binary labels by assigning each review a positive or negative label if the
review score was above 6 or below 5, respectively. Reviews with scores
5 and 6 were considered too neutral and thus excluded. We follow the
same protocol in this chapter.

The dataset is divided in two even partitions called train and test,
each containing 25,000 reviews. The dataset also provides additional
unlabeled reviews, but we will not use those here. Each partition con-
tains two directories called pos and neg where the positive and negative
examples are stored. Each review is stored in an independent text file,
whose name is composed of an id unique to the partition and the score
associated with the review, separated by an underscore. An example of
a positive and a negative review is shown in Table 4.1.

4.1.2 Bag-of-words Model
As discussed in Section 2.2, we will encode the text to classify as a bag
of words. That is, we encode each review as a list of numbers, with each
position in the list corresponding to a word in our vocabulary, and the
value stored in that position corresponding to the number of times the
word appears in the review. For example, say we want to encode the
following two reviews:

4 https://ai.stanford.edu/~amaas/data/sentiment/
5 https://www.imdb.com/

https://ai.stanford.edu/~amaas/data/sentiment/
https://www.imdb.com/
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Table 4.1 Two examples of movie reviews from IMDb. The first is a
positive review of the movie Puss in Boots (1988). The second is a

negative review of the movie Valentine (2001). These reviews can be
found at https://www.imdb.com/review/rw0606396/ and
https://www.imdb.com/review/rw0721861/, respectively.

Filename Score Binary Review Text
Label

train/pos/24_8.txt 8/10 Positive Although this was obviously a
low-budget production, the per-
formances and the songs in
this movie are worth seeing.
One of Walken’s few musical
roles to date. (he is a mar-
velous dancer and singer and
he demonstrates his acrobatic
skills as well - watch for the
cartwheel!) Also starring Ja-
son Connery. A great children’s
story and very likable charac-
ters.

train/neg/141_3.txt 3/10 Negative This stalk and slash turkey
manages to bring nothing new
to an increasingly stale genre.
A masked killer stalks young,
pert girls and slaughters them
in a variety of gruesome ways,
none of which are particularly
inventive. It’s not scary, it’s
not clever, and it’s not funny.
So what was the point of it?

Review 1: "I liked the movie. My friend liked it too."
Review 2: "I hated it. Would not recommend."

First, we need to create a vocabulary that maps each word to an id
that uniquely identifies it. Each of this numbers will be used as the index
in a list, so they must start at zero and grow by one for each word in
the vocabulary. For example, one possible vocabulary that encodes the
previous reviews is:

{'would': 0,
'hated': 1,

https://www.imdb.com/review/rw0606396/
https://www.imdb.com/review/rw0721861/
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'my': 2,
'liked': 3,
'not': 4,
'it': 5,
'movie': 6,
'recommend': 7,
'the': 8,
'I': 9,
'too': 10,
'friend': 11}

Using this mapping, we can encode the two reviews as follows:

Review 1: [0, 0, 1, 2, 0, 1, 1, 0, 1, 1, 1, 1]
Review 2: [1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0]

Note that the word liked (fourth position) in the first review has a
value of two. This is because this word appears twice in that review.

This is a small example with a vocabulary of only 12 terms. Of course,
the same process needs to be implemented for our whole training dataset.
For this purpose we will use scikit-learn’s CountVectorizer class.6 Using
the CountVectorizer class simplifies things, allowing us to get started
quickly with a bag-of-words approach. However, note that it makes sev-
eral simplifying assumptions (e.g., text is lowercased, and punctuation
and single character tokens are removed). Some of these may not be
adequate to other tasks.

First, we need to obtain the filenames for the reviews in the training
set:

[4]: from glob import glob

pos_files = glob('data/aclImdb/train/pos/*.txt')
neg_files = glob('data/aclImdb/train/neg/*.txt')

print('number of positive reviews:', len(pos_files))
print('number of negative reviews:', len(neg_files))

number of positive reviews: 12500
number of negative reviews: 12500
6 https://scikit-learn.org/stable/modules/generated/sklearn.feature_

extraction.text.CountVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
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Once we have acquired the filenames for the training reviews, we need
to read them using the CountVectorizer. In order for the CountVectorizer
to open and read the files for us, we make use of the input='filename'
constructor parameter (otherwise it would expect the string content di-
rectly). The CountVectorizer provides three methods that will be use-
ful for us: a method called fit() that is used to acquire the vocabulary,
a method transform() that converts the text into the bag-of-words rep-
resentation, and a method fit_transform() that conveniently acquires
the vocabulary and transforms the data in a single step. The resulting
object is referred to as a document-term matrix, where each row corre-
sponds to a document, and each column corresponds to a term in the
vocabulary.

[5]: from sklearn.feature_extraction.text import␣
↪→CountVectorizer

cv = CountVectorizer(input='filename')

doc_term_matrix = cv.fit_transform(pos_files + neg_files)
doc_term_matrix

[5]: <25000x74849 sparse matrix of type '<class 'numpy.int64'>'
with 3445861 stored elements in Compressed Sparse␣

↪→Row format>

As the output above indicates, the resulting matrix has 25,000 rows
(one for each review), and 74,849 columns (one for each term). Also
you may note that this matrix is sparse, with 3,445,861 stored elements.
A regular matrix of shape 25, 000× 74, 849 would have 1,871,225,000
elements. However, most of the elements in a document-term matrix
are zeros because only a few words from the vocabulary appear in each
document. A sparse matrix takes advantage of this fact by storing only
the non-zero cells in order to reduce the memory required to store it.
Thus, sparse matrices are convenient, especially when dealing with lots
of data. Nevertheless, to simplify the downstream code in this example,
we will convert it into a dense matrix, i.e., a regular two-dimensional
NumPy array.

[6]: X_train = doc_term_matrix.toarray()
X_train.shape
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[6]: (25000, 74849)

Finally, we also need the labels of the reviews. We assign a label of
one to positive reviews, and a label of zero to negative ones. Note that
the first half of the reviews are positive and the second half are negative.
The label at the ith position of the y_train array corresponds to the
review encoded in the ith row of the X_train matrix.

[7]: # training labels
y_pos = np.ones(len(pos_files))
y_neg = np.zeros(len(neg_files))
y_train = np.concatenate([y_pos, y_neg])
y_train

[7]: array([1., 1., 1., …, 0., 0., 0.])

4.1.3 Perceptron
Now that we have defined our task and the data processing pipeline, we
will implement a perceptron classifier that classifies the movie reviews as
positive or negative. The entire code discussed in this section is available
in the chap4_perceptron notebook. Recall from Section 2.4 that the
perceptron is composed of a weight vector w and a bias term b. These will
be represented as a NumPy array w of the same length as our document
vectors, and a variable b for the bias term. Both will be initialized with
zeros.

[8]: n_examples, n_features = X_train.shape
w = np.zeros(n_features)
b = 0

The parameters w and b are learned through the following algorithm,
which implements Algorithm 2 from Chapter 2:

[9]: n_epochs = 10

indices = np.arange(n_examples)
for epoch in range(10):

n_errors = 0
# shuffle training examples
np.random.shuffle(indices)
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# traverse the training data
for i in tqdm(indices, desc=f'epoch {epoch+1}'):

x = X_train[i]
y_true = y_train[i]
# the perceptron decision based on the current␣

↪→model
score = x @ w + b
y_pred = 1 if score > 0 else 0
# update the model is the prediction was␣

↪→incorrect
if y_true == y_pred:

continue
elif y_true == 1 and y_pred == 0:

w = w + x
b = b + 1
n_errors += 1

elif y_true == 0 and y_pred == 1:
w = w - x
b = b - 1
n_errors += 1

if n_errors == 0:
break

There are a couple of details to point out. Line 3 of Algorithm 2
indicates that we need to repeat the training loop until convergence.
Theoretically, convergence is defined as predicting all training examples
correctly. This is an ambitious requirement, which is not always possible
in practice, so in this code we also include a stop condition if we reach a
maximum number of epochs. Another crucial difference between our im-
plementation here and the theoretical Algorithm 2, is that we randomize
the order in which the training examples are seen at the beginning of
each epoch. This simple (but highly recommended!) change is necessary
to avoid the introduction of spurious biases due to the arbitrary order
of the examples in the original training partition.7 We accomplish this
by storing the indices corresponding to the X_train matrix rows in a
NumPy array, and shuffling these indices at the beginning of each epoch.

7 As an extreme example, consider a dataset where all the positive examples
appear first in the training partition. This would cause the perceptron to
artificially inflate the weights of the features that occur in these examples, a
situation from which the learning algorithm may struggle to recover.
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We shuffle the indices instead of the examples so that we can preserve
the mapping between examples and labels.

The training loop aligns closely with Algorithm 2. We start by iter-
ating over each example in our training data, storing the current ex-
ample in the variable x,8 and its corresponding label in the variable
y_true. Next, we compute the perceptron decision function shown in
Algorithm 1. Note that NumPy (as well as PyTorch) uses Python’s @
operator to indicate vector or matrix multiplication, depending on its
operand types. Here we use it to calculate the dot product of the exam-
ple x and the weights w. To this we add the bias b to obtain the predicted
score, whose sign is used to assign a positive or negative predicted label.
If the prediction is correct, then no update is needed, and we can move
on to the next training example. However, if the prediction is incorrect,
then we need to adjust w and b, as described in Algorithm 2.

After training, we evaluate the model’s performance on the held-
out test partition. The test data is loaded similarly to the training
partition, but with one notable difference; we use CountVectorizer’s
transform() method instead of the fit_transform() method so that
the vocabulary is not adjusted for the test data. We won’t show here
the loading of the test partition since it is so similar to the code already
shown, but it is available in the Jupyter notebook that accompanies this
section.

Using the model to assign labels to all the test data is easily done in
one step – we simply multiply the entire test data document-term matrix
by the previously learned weights and add the bias. Scores greater than
zero indicate a positive review, and those less than zero are negative.

[11]: y_pred = (X_test @ w + b) > 0

At this point we can evaluate the classifier’s performance, which we
will do using precision, recall, and F1 scores for binary classification (de-
scribed in Section 2.3). For this purpose, we implement a function called
binary_classification_report that computes these metrics and re-
turns them as a dictionary:

[12]: def binary_classification_report(y_true, y_pred):
# count true positives, false positives,
# true negatives, and false negatives

8 We use typewriter font when we discuss variables in the code, to distinguish code
from the theoretical discussion in the other chapters.
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tp = fp = tn = fn = 0
for gold, pred in zip(y_true, y_pred):

if pred == True:
if gold == True:

tp += 1
else:

fp += 1
else:

if gold == False:
tn += 1

else:
fn += 1

# calculate precision and recall
precision = tp / (tp + fp)
recall = tp / (tp + fn)
# calculate f1 score
fscore = 2 * precision * recall / (precision +␣

↪→recall)
# calculate accuracy
accuracy = (tp + tn) / len(y_true)
# number of positive labels in y_true
support = sum(y_true)
return {

"precision": precision,
"recall": recall,
"f1-score": fscore,
"support": support,
"accuracy": accuracy,

}

We call this function to compare the predicted labels to the true labels,
and obtain the evaluation scores.

[13]: binary_classification_report(y_test, y_pred)

[13]: {'precision': 0.8288497891522466,
'recall': 0.912,
'f1-score': 0.8684390949950485,
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'support': 12500.0,
'accuracy': 0.86184}

Our F1 score here is 86.8%, which is much higher than the baseline
that assigns labels randomly, which yields an F1 score of about 50%. This
is a good result, especially considering the simplicity of the perceptron!
In the next sections and chapters, we will discuss a battery of strategies
to considerably improve this performance.

4.1.4 Binary Logistic Regression from Scratch
Using the same task, dataset, and evaluation, we will now implement a
logistic regression classifier, as described in Algorithm 5 from Chapter 3.
To give the reader hands-on experience with the implementation of the
gradient calculations for logistic regression, we start by implementing it
from scratch using NumPy. All the code shown in this section is available
in the chap4_logistic_regression_numpy notebook.

In the perceptron implementation, we represented the weights and
the bias as two different variables. Here, however, we will use a different
approach that will allow us to unify them into a single vector variable.
Specifically, we take advantage of the similarity between the derivative
of the cost function with respect to the weights (Equation 3.14) and the
derivative of the cost with respect to the bias (Equation 3.15).

d

dwj
Ci(w, b) = (σi − yi)xij (3.14 revisited)

d

db
Ci(w, b) = σi − yi (3.15 revisited)

Note that the two derivative formulas are identical except that the for-
mer has a multiplication by xij , while the latter does not. However,
since

σi − yi = (σi − yi)1

we can multiply the derivative of the cost with respect to the bias by one
without changing the semantics. This gives an opportunity for combining
the computations, doing them both in a single pass. The idea is that we
can treat the bias as a weight corresponding to a feature that always has
a value of one.
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[7]: # Make an array with a one for each row/data point
ones = np.ones(X_train.shape[0])
# Concatenate these ones to existing feature vectors
X_train = np.column_stack((X_train, ones))
X_train.shape

[7]: (25000, 74850)

As can be seen above, we created a NumPy array of ones of the same
length as the number of examples in our training set (i.e., the number
of rows in the data matrix). Then we add this array as a new column to
the data matrix, using NumPy’s column_stack function.

Next, we need to initialize our model. This time we will use a single
NumPy array w of the same length as the number of columns in the data
matrix. The weight vector w is initialized randomly with values between
0 and 1:

[9]: n_examples, n_features = X_train.shape
w = np.random.random(n_features)

Before implementing the learning algorithm, we need an implementa-
tion of the logistic function. Recall that the logistic function is

σ(x) =
1

1 + e−x
(3.1 revisited)

This function can be easily implemented in NumPy as follows:

[10]: def logistic(x):
return 1 / (1 + np.exp(-x))

However, this naive implementation may produce the following warn-
ing during training:

RuntimeWarning: overflow encountered in exp
return 1 / (1 + np.exp(-x))

The term overflow indicates that the result of evaluating exp(-x) is
a number so large that it can’t be represented by a float (specifically,
we’re using float64 numbers). We will avoid this issue by not calling
exp with values that will overflow. NumPy provides the function finfo
that can be consulted to find the limits of floating point numbers:
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[11]: np.finfo(np.float64)

[11]: finfo(resolution=1e-15, min=-1.7976931348623157e+308,
max=1.7976931348623157e+308, dtype=float64)

The log of the largest floating point number is the largest number for
which exp() will not overflow, so we will use it as a threshold to filter
out problematic values:

[10]: max_float = np.finfo(np.float64).max

def logistic(x):
if -x > np.log(max_float):

return 0.0
return 1 / (1 + np.exp(-x))

We now have everything we need to implement Algorithm 4. The steps
to follow for each example are: (1) use the model to make a prediction,
(2) calculate the gradient of the loss function with respect to the model
parameters, and (3) update the model parameters using the gradient.
The size of the update is controlled by the learning rate.

[12]: learning_rate = 1e-1
n_epochs = 10

indices = np.arange(n_examples)
for epoch in range(10):

# randomize training examples
np.random.shuffle(indices)
# for each training example
for i in tqdm(indices, desc=f'epoch {epoch+1}'):

x = X_train[i]
y = y_train[i]
# make decision
decision = x @ w
# calculate derivative
deriv_cost = (logistic(decision) - y) * x
# update weights
w = w - deriv_cost * learning_rate

Once the model has been trained, we evaluate it on the test dataset



4.1 Binary Classification 67

using our binary_classification_report function from the previous
section. Loading and preprocessing the test dataset follows the same
steps as with the previous classifier. We omit the code for brevity. These
are the results:

[14]: y_pred = X_test @ w > 0
binary_classification_report(y_test, y_pred)

[14]: {'precision': 0.8946762335016387,
'recall': 0.808,
'f1-score': 0.849131951742402,
'support': 12500.0,
'accuracy': 0.85644}

The performance is comparable with that of the perceptron. We have
now implemented the logistic regression model from scratch, implement-
ing the gradient calculation and parameter updates manually. Next, we
will implement the same model again using PyTorch, highlighting how
this machine learning library simplifies the process.

4.1.5 Binary Logistic Regression Utilizing PyTorch
While it is fairly straightforward to compute the derivatives for logistic
regression and implement then directly in NumPy, this will not scale
well to arbitrary neural architectures. Fortunately, there are libraries
that automate the computation of the derivatives of the cost function
(assuming it is differentiable!) for any neural network, and use the re-
sulting gradients to perform gradient descent or other more sophisti-
cated optimization procedures. To this end, we will use the PyTorch
deep learning library9. The corresponding notebook for this section is
chap4_logistic_regression_pytorch_bce.

Our model for logistic regression corresponds to PyTorch’s Linear
layer. When we instantiate this layer, we specify the size of the inputs
(the size of our vocabulary) and the size of the output, i.e., the number of
output neurons (which is one because we’re doing binary classification).
The loss function we use is the binary cross-entropy loss (see Chapter 3),
which is implemented as BCEWithLogitsLoss in PyTorch. In PyTorch,
the gradients obtained from the loss function are applied to the model
by an optimizer object, which implements and applies an optimization
9 https://pytorch.org/

https://pytorch.org/
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algorithm. Here we will use the vanilla stochastic gradient descent opti-
mizer; we set its learning rate to 0.1. This is equivalent to the discussion
in Section 3.2.

Similarly to the manual implementation, the steps required to train
the model for a given training example are: (1) ensure the gradients are
set to zeros, (2) apply the model to obtain a prediction, (3) calculate
the loss, (4) compute the gradient of the loss by back-propagation, and
(5) update the model parameters.

[9]: import torch
from torch import nn
from torch import optim

lr = 1e-1
n_epochs = 10

model = nn.Linear(n_features, 1)
loss_func = nn.BCEWithLogitsLoss()
optimizer = optim.SGD(model.parameters(), lr=lr)

X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32)

indices = np.arange(n_examples)
for epoch in range(10):

n_errors = 0
# randomize training examples
np.random.shuffle(indices)
# for each training example
for i in tqdm(indices, desc=f'epoch {epoch+1}'):

x = X_train[i]
y_true = y_train[i]
# ensure gradients are set to zero
model.zero_grad()
# make predictions
y_pred = model(x)
# calculate loss
loss = loss_func(y_pred[0], y_true)
# calculate gradients through back-propagation
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loss.backward()
# optimize model parameters
optimizer.step()

Recall that in our previous implementation everything was hardcoded:
applying the model, computing the gradients, and optimizing the model
parameters. Here, however, the implementation of the logistic regres-
sion is expressed at a higher level of abstraction. This means that we
are describing the logical steps without specifying a particular imple-
mentation. Instead, implementation details are the responsability of the
chosen model, loss function, and optimizer. Thus, we could even choose a
different model, loss function, and/or optimizer, and use the same train-
ing steps with little or no modification. This decoupling of the training
logic from the implementation details is one of the main advantages of
libraries such as PyTorch.

As shown in the code above, calling the model as a function, with the
feature vectors as inputs, produces the predicted scores. Once again, a
positive score corresponds to a positive label. When we evaluate this
implementation on the test dataset, we obtain results that are in line
with our previous models:

[13]: y_pred = model(X_test) > 0
binary_classification_report(y_test, y_pred)

[13]: {'precision': 0.8908308222126561,
'recall': 0.82776,
'f1-score': 0.8581380883267676,
'support': 12500.0,
'accuracy': 0.86316}

Writing the perceptron and the logistic regression from scratch is a
good exercise, as it exposes us to the fundamentals of implementing
machine learning algorithms. However, this becomes cumbersome for
more complex neural architectures. For this reason, from this point on,
we will use PyTorch for all our coding examples.



70 Implementing Text Classification Using Logistic Regression

4.2 Multiclass Classification
So far, in this chapter we have discussed implementing binary classi-
fiers. Next, we will modify these binary classifiers to perform multiclass
classification, following the discussion in Section 3.5.

4.2.1 AG News Dataset
Before explaining the actual training/testing code, we have to choose
a new dataset that is suitable for multiclass classification. To this end,
we will use the AG News Classification Dataset (Zhang et al., 2015), a
subset of the larger AG corpus of news articles collected from thousands
of different news sources.10 The classification dataset consists of four
classes, and the data is equally balanced across all classes (30,000 articles
per class for train, and 1,900 articles per class for testing). The goal of
the task is to classify each article as one of the four classes: World,
Sports, Business, or Sci/Tech.

4.2.2 Preparing the Dataset
The AG News Dataset is distributed as two CSV files (one for training
and one for testing), each containing three columns: the class index, the
title, and the description. The dataset also provides a text file that maps
the above class indexes to more descriptive class labels.

Because of the tabular nature of the dataset, pandas, a Python library
for tabular data analysis,11 is a natural choice for loading and transform-
ing it. To this end, our Jupyter notebook (chap4_multiclass_logistic_regression)
demonstrates the sequence of steps required to handle the data, as well
as model training and evaluation. First, we show how to load the CSV,
add column names, and inspect the result:

[2]: train_df = pd.read_csv('data/ag_news_csv/train.csv',␣
↪→header=None)
train_df.columns = ['class index', 'title',␣

↪→'description']
train_df

10 http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
11 https://pandas.pydata.org

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://pandas.pydata.org
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class index title description

0 3 Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street's dwindli...

1 3 Carlyle Looks Toward Commercial Aerospace (Reu... Reuters - Private investment firm Carlyle Grou...

2 3 Oil and Economy Cloud Stocks' Outlook (Reuters) Reuters - Soaring crude prices plus worries\ab...

3 3 Iraq Halts Oil Exports from Main Southern Pipe... Reuters - Authorities have halted oil export\f...

4 3 Oil prices soar to all-time record, posing new... AFP - Tearaway world oil prices, toppling reco...

... ... ... ...

119995 1 Pakistan's Musharraf Says Won't Quit as Army C... KARACHI (Reuters) - Pakistani President Perve...

119996 2 Renteria signing a top-shelf deal Red Sox general manager Theo Epstein acknowled...

119997 2 Saban not going to Dolphins yet The Miami Dolphins will put their courtship of...

119998 2 Today's NFL games PITTSBURGH at NY GIANTS Time: 1:30 p.m. Line: ...

119999 2 Nets get Carter from Raptors INDIANAPOLIS -- All-Star Vince Carter was trad...

120000 rows × 3 columns

Since the class labels themselves are in a separate file, we manually
add them to the pandas data structure (called dataframe in pandas’
terminology) to increase the interpretability of the data. We use the
class index column as a starting point, and use its map method to create
a new column with the corresponding labels (technically a new Series
object) that is added to the dataframe using its insert method, which
allows us to insert the column in a specific position. Note that the label
indices are one-based, so we subtract one to align them with their labels.

[3]: labels = open('data/ag_news_csv/classes.txt').read().
↪→splitlines()
classes = train_df['class index'].map(lambda i:␣

↪→labels[i-1])
train_df.insert(1, 'class', classes)
train_df

class index class title description

0 3 Business Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street's dwindli...

1 3 Business Carlyle Looks Toward Commercial Aerospace (Reu... Reuters - Private investment firm Carlyle Grou...

2 3 Business Oil and Economy Cloud Stocks' Outlook (Reuters) Reuters - Soaring crude prices plus worries\ab...

3 3 Business Iraq Halts Oil Exports from Main Southern Pipe... Reuters - Authorities have halted oil export\f...

4 3 Business Oil prices soar to all-time record, posing new... AFP - Tearaway world oil prices, toppling reco...

... ... ... ... ...

119995 1 World Pakistan's Musharraf Says Won't Quit as Army C... KARACHI (Reuters) - Pakistani President Perve...

119996 2 Sports Renteria signing a top-shelf deal Red Sox general manager Theo Epstein acknowled...

119997 2 Sports Saban not going to Dolphins yet The Miami Dolphins will put their courtship of...

119998 2 Sports Today's NFL games PITTSBURGH at NY GIANTS Time: 1:30 p.m. Line: ...

119999 2 Sports Nets get Carter from Raptors INDIANAPOLIS -- All-Star Vince Carter was trad...

120000 rows × 4 columns

Next we will preprocess the text. First we lowercase the title and
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description, and then we concatenate them into a single string. Then we
remove some spurious backslashes from the text. Once this is done, the
preprocessed text is added to the dataframe as a new column. Note that
pandas allows these steps to be applied to all rows simultaneously.

[6]: title = train_df['title'].str.lower()
descr = train_df['description'].str.lower()
text = title + " " + descr
train_df['text'] = text.str.replace('\\', ' ',␣

↪→regex=False)
train_df

class
index

class title description text

0 3 Business
Wall St. Bears Claw Back Into the Black

(Reuters)
Reuters - Short-sellers, Wall Street's dwindli...

wall st. bears claw back into the black
(reute...

1 3 Business
Carlyle Looks Toward Commercial

Aerospace (Reu...
Reuters - Private investment firm Carlyle

Grou...
carlyle looks toward commercial

aerospace (reu...

2 3 Business
Oil and Economy Cloud Stocks' Outlook

(Reuters)
Reuters - Soaring crude prices plus

worries\ab...
oil and economy cloud stocks' outlook

(reuters...

3 3 Business
Iraq Halts Oil Exports from Main Southern

Pipe...
Reuters - Authorities have halted oil export\f...

iraq halts oil exports from main southern
pipe...

4 3 Business
Oil prices soar to all-time record, posing

new...
AFP - Tearaway world oil prices, toppling

reco...
oil prices soar to all-time record, posing

new...

... ... ... ... ... ...

119995 1 World
Pakistan's Musharraf Says Won't Quit as

Army C...
KARACHI (Reuters) - Pakistani President

Perve...
pakistan's musharraf says won't quit as

army c...

119996 2 Sports Renteria signing a top-shelf deal
Red Sox general manager Theo Epstein

acknowled...
renteria signing a top-shelf deal red sox

gene...

119997 2 Sports Saban not going to Dolphins yet
The Miami Dolphins will put their courtship

of...
saban not going to dolphins yet the miami

dolp...

119998 2 Sports Today's NFL games
PITTSBURGH at NY GIANTS Time: 1:30 p.m.

Line: ...
today's nfl games pittsburgh at ny giants

time...

119999 2 Sports Nets get Carter from Raptors
INDIANAPOLIS -- All-Star Vince Carter was

trad...
nets get carter from raptors indianapolis --

a...

120000 rows × 5 columns

At this point, the text is ready to be tokenized. For this purpose we will
use NLTK’s word_tokenize function. This function can be applied to
the whole column at once using the pandas map function, which returns a
new column which we add to the dataframe. However, here we actually
use the progress_map function, which provides a visual progress bar.
This visual feedback is especially helpful for tasks that take more time
to complete.

[7]: from nltk.tokenize import word_tokenize

train_df['tokens'] = train_df['text'].
↪→progress_map(word_tokenize)
train_df
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class
index

class title description text tokens

0 3 Business
Wall St. Bears Claw Back Into the

Black (Reuters)
Reuters - Short-sellers, Wall

Street's dwindli...
wall st. bears claw back into the

black (reute...
[wall, st., bears, claw, back,

into, the, blac...

1 3 Business
Carlyle Looks Toward Commercial

Aerospace (Reu...
Reuters - Private investment firm

Carlyle Grou...
carlyle looks toward commercial

aerospace (reu...
[carlyle, looks, toward,

commercial, aerospace...

2 3 Business
Oil and Economy Cloud Stocks'

Outlook (Reuters)
Reuters - Soaring crude prices plus

worries\ab...
oil and economy cloud stocks'

outlook (reuters...
[oil, and, economy, cloud,

stocks, ', outlook,...

3 3 Business
Iraq Halts Oil Exports from Main

Southern Pipe...
Reuters - Authorities have halted

oil export\f...
iraq halts oil exports from main

southern pipe...
[iraq, halts, oil, exports, from,

main, southe...

4 3 Business
Oil prices soar to all-time record,

posing new...
AFP - Tearaway world oil prices,

toppling reco...
oil prices soar to all-time record,

posing new...
[oil, prices, soar, to, all-time,

record, ,, p...

... ... ... ... ... ... ...

119995 1 World
Pakistan's Musharraf Says Won't

Quit as Army C...
KARACHI (Reuters) - Pakistani

President Perve...
pakistan's musharraf says won't

quit as army c...
[pakistan, 's, musharraf, says,

wo, n't, quit,...

119996 2 Sports Renteria signing a top-shelf deal
Red Sox general manager Theo

Epstein acknowled...
renteria signing a top-shelf deal

red sox gene...
[renteria, signing, a, top-shelf,

deal, red, s...

119997 2 Sports Saban not going to Dolphins yet
The Miami Dolphins will put their

courtship of...
saban not going to dolphins yet

the miami dolp...
[saban, not, going, to, dolphins,

yet, the, mi...

119998 2 Sports Today's NFL games
PITTSBURGH at NY GIANTS

Time: 1:30 p.m. Line: ...
today's nfl games pittsburgh at

ny giants time...
[today, 's, nfl, games,
pittsburgh, at, ny, gi...

119999 2 Sports Nets get Carter from Raptors
INDIANAPOLIS -- All-Star Vince

Carter was trad...
nets get carter from raptors

indianapolis -- a...
[nets, get, carter, from, raptors,

indianapoli...

120000 rows × 6 columns

From the tokens we just created, we then create a vocabulary for
our corpus. Here, we only keep the words that occur at least 10 times,
decreasing the memory needed and reducing the likelihood that our vo-
cabulary contains noisy tokens. Note that each row in the tokens column
contains a list of tokens. In order to create the vocabulary, we will need
to convert the Series of lists of tokens into a Series of tokens using
the explode() Pandas method. Then we will use the value_counts()
method to create a Series object in which the index are the tokens
and the values are the number of times they appear in the corpus. The
next step is removing the tokens with a count lower than our chosen
threshold. Finally, we create a list with the remaining tokens, as well as
a dictionary that maps tokens to token ids (i.e., the index of the token
in the list). We include in the vocabulary a special token [UNK] that will
be used as a placeholder for tokens that do not appear in our vocabulary
after the frequency pruning.

[8]: threshold = 10
tokens = train_df['tokens'].explode().value_counts()
tokens = tokens[tokens > threshold]
id_to_token = ['[UNK]'] + tokens.index.tolist()
token_to_id = {w:i for i,w in enumerate(id_to_token)}
vocabulary_size = len(id_to_token)
print(f'vocabulary size: {vocabulary_size:,}')

vocabulary size: 19,671

Using this vocabulary, we construct a feature vector for each news
article in the corpus. This feature vector will be encoded as a dictionary,
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with keys corresponding to token ids, and values corresponding to the
number of times the token appears in the article. As above, the feature
vectors will be stored as a new column in the dataframe.

[9]: from collections import defaultdict

def make_features(tokens, unk_id=0):
vector = defaultdict(int)
for t in tokens:

i = token_to_id.get(t, unk_id)
vector[i] += 1

return vector

train_df['features'] = train_df['tokens'].
↪→progress_map(make_features)
train_df

class
index

class title description text tokens features

0 3 Business
Wall St. Bears Claw Back

Into the Black (Reuters)
Reuters - Short-sellers, Wall

Street's dwindli...
wall st. bears claw back

into the black (reute...
[wall, st., bears, claw,
back, into, the, blac...

{427: 2, 563: 1, 1607: 1,
15062: 1, 120: 1, 73...

1 3 Business
Carlyle Looks Toward

Commercial Aerospace
(Reu...

Reuters - Private investment
firm Carlyle Grou...

carlyle looks toward
commercial aerospace

(reu...

[carlyle, looks, toward,
commercial, aerospace...

{15999: 2, 1076: 1, 855:
1, 1286: 1, 4251: 1, ...

2 3 Business
Oil and Economy Cloud

Stocks' Outlook (Reuters)
Reuters - Soaring crude
prices plus worries\ab...

oil and economy cloud
stocks' outlook (reuters...

[oil, and, economy, cloud,
stocks, ', outlook,...

{66: 1, 9: 2, 351: 2,
4565: 1, 158: 1, 116: 1,...

3 3 Business
Iraq Halts Oil Exports from

Main Southern Pipe...
Reuters - Authorities have

halted oil export\f...
iraq halts oil exports from

main southern pipe...
[iraq, halts, oil, exports,

from, main, southe...
{77: 2, 7380: 1, 66: 3,

1787: 1, 32: 2, 900: 2...

4 3 Business
Oil prices soar to all-time

record, posing new...
AFP - Tearaway world oil

prices, toppling reco...
oil prices soar to all-time

record, posing new...
[oil, prices, soar, to, all-

time, record, ,, p...
{66: 2, 99: 2, 4390: 1, 4:

2, 3595: 1, 149: 1,...

... ... ... ... ... ... ... ...

119995 1 World
Pakistan's Musharraf Says

Won't Quit as Army C...
KARACHI (Reuters) -

Pakistani President Perve...
pakistan's musharraf says

won't quit as army c...
[pakistan, 's, musharraf,

says, wo, n't, quit,...
{383: 1, 23: 1, 1626: 2,
91: 1, 1809: 1, 285: ...

119996 2 Sports
Renteria signing a top-shelf

deal
Red Sox general manager
Theo Epstein acknowled...

renteria signing a top-
shelf deal red sox gene...

[renteria, signing, a, top-
shelf, deal, red, s...

{8428: 2, 2638: 1, 5: 4,
0: 3, 127: 1, 202: 3,...

119997 2 Sports
Saban not going to

Dolphins yet
The Miami Dolphins will put

their courtship of...

saban not going to
dolphins yet the miami

dolp...

[saban, not, going, to,
dolphins, yet, the, mi...

{7762: 2, 68: 1, 661: 1,
4: 2, 1439: 2, 703: 1...

119998 2 Sports Today's NFL games
PITTSBURGH at NY

GIANTS Time: 1:30 p.m.
Line: ...

today's nfl games
pittsburgh at ny giants

time...

[today, 's, nfl, games,
pittsburgh, at, ny, gi...

{106: 1, 23: 1, 729: 1,
225: 1, 1586: 1, 22: 1...

119999 2 Sports
Nets get Carter from

Raptors
INDIANAPOLIS -- All-Star

Vince Carter was trad...
nets get carter from

raptors indianapolis -- a...
[nets, get, carter, from,

raptors, indianapoli...
{2170: 2, 226: 1, 2402:
2, 32: 1, 2995: 2, 219...

120000 rows × 7 columns

The final preprocessing step is converting the features and the class
indices into PyTorch tensors. Recall that we need to subtract one from
the class indices to make them zero-based.

[10]: def make_dense(feats):
x = np.zeros(vocabulary_size)
for k,v in feats.items():

x[k] = v
return x



4.2 Multiclass Classification 75

X_train = np.stack(train_df['features'].
↪→progress_map(make_dense))
y_train = train_df['class index'].to_numpy() - 1

X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train)

At this point, the data is fully processed and we are ready to begin
training.

4.2.3 Multiclass Logistic Regression Using PyTorch
The model itself is a single linear layer whose input size corresponds
to the size of our vocabulary, and its output size corresponds to the
number of classes in our corpus. PyTorch’s Linear layer includes a bias
by default, so there is no need to handle that manually the way we did
for our perceptron example.

[11]: from torch import nn
from torch import optim

# hyperparameters
lr = 1.0
n_epochs = 5
n_examples = X_train.shape[0]
n_feats = X_train.shape[1]
n_classes = len(labels)

# initialize the model, loss function, and optimizer
model = nn.Linear(n_feats, n_classes).to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr)

# train the model
indices = np.arange(n_examples)
for epoch in range(n_epochs):

np.random.shuffle(indices)
for i in tqdm(indices, desc=f'epoch {epoch+1}'):

# clear gradients
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model.zero_grad()
# send datum to right device
x = X_train[i].unsqueeze(0).to(device)
y_true = y_train[i].unsqueeze(0).to(device)
# predict label scores
y_pred = model(x)
# compute loss
loss = loss_func(y_pred, y_true)
# backpropagate
loss.backward()
# optimize model parameters
optimizer.step()

The code for training this model (which implements Algorithm 6) is
almost identical to that of the binary logistic repression. However, since
we have to calculate a score for each of the four different classes, we need
to replace the previous BCEWithLogitsLoss with CrossEntropyLoss,
which applies a softmax over the scores to obtain probabilities for each
class.

For each example, the model predicts 4 scores – one for each label.
The label with the highest score is selected using the argmax function.
We evaluate the predictions of our model for each class using Scikit-
learn’s classification_report, which handles the results of multiclass
classification.

[13]: from sklearn.metrics import classification_report

# set model to evaluation mode
model.eval()

# don't store gradients
with torch.no_grad():

X_test = X_test.to(device)
y_pred = torch.argmax(model(X_test), dim=1)
y_pred = y_pred.cpu().numpy()
print(classification_report(y_test, y_pred,␣

↪→target_names=labels))

precision recall f1-score support
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World 0.94 0.82 0.88 1900
Sports 0.89 0.99 0.94 1900

Business 0.81 0.88 0.85 1900
Sci/Tech 0.89 0.83 0.86 1900

accuracy 0.88 7600
macro avg 0.88 0.88 0.88 7600

weighted avg 0.88 0.88 0.88 7600

4.3 Summary

In this chapter, we used movie review and news article classification to
illustrate the implementation of the previously described algorithms for
the binary perceptron, binary logistic regression, and multiclass logistic
regression. For the binary logistic regression, we made a direct compar-
ison between the lower-level NumPy implementation and a higher-level
version that made use of PyTorch.

We hope that through this series of exercises the reader has noted
several key takeaways. First, data preparation is important and should
be done thoughtfully. Certain tasks (e.g., text normalization or sentence
splitting) are going to be frequently needed if you continue with NLP, so
using or creating generic functions can be very helpful. However, what
works for one dataset and one language may not be suitable for another
scenario. For example, in our case, we selected different tokenizers for
each of our tasks to account for the different registers of English, as well
as removing diacritics during normalization.

Second, when it comes to implementing machine learning algorithms,
it is often easier to use a higher-level library such as PyTorch instead
of NumPy. For example, with the former, the gradients are calculated
by the library, whereas in NumPy we have to code them ourselves. This
becomes cumbersome quickly. For example, even the derivative of the
softmax is non-trivial.

Third, PyTorch imposes a training structure that remains largely the
same, regardless of what models are being trained. That is, at a high
level, the same steps are always required: clearing the current gradients,
predicting output scores for the provided inputs, calculating the loss, and
optimizing. These features make PyTorch a very powerful and convenient
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deep learning library; we will continue to use it throughout the remainder
of the book to implement more complex neural architectures.



5
Feed Forward Neural Networks

So far we have explored classifiers with decision boundaries that are
linear, or, in the case of the multiclass logistic regression, a combina-
tion of linear segments. In this chapter, we will expand what we have
learned so far to classifiers that are capable of learning non-linear deci-
sion boundaries. The classifiers that we will discuss here are called feed
forward neural networks, and are a generalization of both logistic regres-
sion and the perceptron. Without going into the theory behind it, it has
been shown that, under certain conditions, these classifiers can approx-
imate any function (Hornik, 1991; Leshno et al., 1993). That is, they
can learn decision boundaries of any arbitrary shape. Figure 5.1 shows
a very simple example of a hypothetical situation where a non-linear
decision boundary is needed for a binary classifier.

The good news is that we have already introduced the building blocks
of feed forward neural networks (FFNN): the individual neuron, and
the stochastic gradient descent algorithm. In this chapter, we are simply
combining these building blocks in slightly more complicated ways, but
without changing any of the fundamental operating principles.

5.1 Architecture of Feed Forward Neural Networks
Figure 5.2 shows the general architecture of FFNNs. As seen in the fig-
ure, FFNNs combine multiple layers of individual neurons, where each
neuron in a layer l is fully connected to all neurons in the next layer,
l + 1. Because of this, architectures such as the one in the figure are
often referred to as fully-connected FFNNs. This is not the only possi-
ble architecture for FFNNs: any arbitrary connections between neurons
are possible. However, because fully-connected networks are the most

79
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Figure 5.1 Decision boundary of a non-linear classifier.

Figure 5.2 Fully-connected feed-forward neural network architecture.

common FFNN architecture seen in NLP, we will focus on these in this
chapter, and omit the fully-connected modifier from now on, for simplic-
ity.

Figure 5.2 shows that the neuron layers in a FFNN are grouped into
three categories. These are worth explaining in detail:
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Input layer: Similar to the perceptron or logistic regression, the in-
put layer contains a vector x that describes one individual data point.
For example, for the review classification task, the input layer will be
populated with features extracted from an individual review such as the
presence (or count) of individual words. In Chapter 8 we will switch from
such hand-crafted features to numerical representations of text that cap-
ture some of the underlying semantics of language, and thus, are better
for learning. Importantly, the neural network is agnostic to the way the
representation of an input data point is created. All that matters for
now is that each input data point is summarized with a vector of real
values, x.

Intermediate layers: Unlike the perceptron and logistic regression,
FFNNs have an arbitrary number of intermediate layers. Each neuron
in an intermediate layer receives as inputs the outputs of the neurons in
the previous layer, and produces an output (or activation) that is sent
to all the neurons in the following layer. The activation of each neuron is
constructed similarly to logistic regression, as a non-linear function that
operates on the dot product of weights and inputs plus the bias term.
More formally, the activation ali of neuron i in layer l is calculated as:

ali = f(

k∑
j=1

wl
ija

l−1
j + bli) = f(wl

i · al−1 + bli) = f(zli) (5.1)

where k is the total number of neurons in the previous layer l − 1, wl
ij

are the weights learned by the current neuron (neuron i in layer l), al−1
j

is the activation of neuron j in the previous layer, and bli is the bias term
of the current neuron. For simplicity, we group all the weights wl

ij into
the vector wl

i, and all activations al−1
j into the vector al−1. Thus, the

summation in the equation reduces to the dot product between the two
vectors: wl

i · al−1. We further denote the sum between this dot product
and the bias term bli as zli. Thus, zli is the output of neuron i in layer l

right before the activation function f is applied.
The function f is a non-linear function that takes zli as its input. For

example, for the logistic regression neuron, f is the logistic function,
σ. Many other non-linear functions are possible and commonly used in
neural networks. We will discuss several such functions, together with
their advantages and disadvantages in Chapter 6. What is important to
realize at this stage is that these non-linear functions are what give neu-
ral networks the capability of learning non-linear decision boundaries. A
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Figure 5.3 A feed-forward neural network with linear activation functions
is a linear classifier.

multi-layer FFNN with linear activation functions remains a linear clas-
sifier. As a simple example, consider the neural network in Figure 5.3,
which has one intermediate layer with two neurons, and a single neuron
in the output layer. Let us consider that the activation function in each
neuron is a “pass through” linear function f(x) = x. The activation of
the output neuron is then computed as:

a31 = w2
11a

2
1 + w2

12a
2
2 + b31 (5.2)

= w2
11(w

1
11x1 + w1

12x2 + w1
13x3 + b21) + w2

12(w
1
21x1 + w1

22x2 + w1
23x3 + b22) + b31

= x1(w
2
11w

1
11 + w2

12w
1
21)+

x2(w
2
11w

1
12 + w2

12w
1
22)+

x3(w
2
11w

1
13 + w2

12w
1
23)+

w2
11b

2
1 + w2

12b
2
2 + b31

which is a linear function on the input variables x1, x2, and x3. It is
easy to show that this observation generalizes to any arbitrary FFNN,
as long as the neuron activation functions are linear.

Output layer: Lastly, FFNNs have an output layer that produces
scores for the classes to be learned. Similar to the multiclass logistic re-
gression, these scores can be aggregated into a probability distribution
if the output layer includes a softmax function. However, the softmax
function is optional (hence the dashed lines in the figure). If softmax is
skipped, the class scores will not form a probability distribution, and
they may or may not be bounded to the [0, 1] interval depending on the
activation functions used in the final layer.
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The values in the zL vector, i.e., the raw neuron outputs in the last
layer, are often referred to as logits. In the case of binary classification,
the logits are usually normalized using sigmoid activations. In the case of
multiclass classification, the logits become the input to a softmax func-
tion. We will see this terminology a lot in the coding chapters because
PyTorch relies on it.

Sidebar 5.1 Tensor notation for feed-forward neural networks

Very often, you will see the equations discussed so far in this chapter
summarized using tensor notation, that is, using vectors and matrices
instead of the explicit math we introduced above. For example, Equa-
tion 5.1 is commonly summarized as: al = f(Wl · al−1 + bl), where the
vectors al and bl contain all activations and biases in layer l, and the
matrix Wl contains all the weights that connect layer l − 1 to layer l.
Thus, Wl has as many columns as the size of al−1, and as many rows
as the size of al. Sometimes, the order of Wl and al−1is flipped in the
equation: al = f(al−1 ·Wl+bl). This does not really matter; one simply
has to be careful about the dimensions of Wl, which change in this case.

Operating with vectors and matrices, as shown in the above equation,
is beneficial. Not only is the math and the resulting code (see Chapter 7)
simpler, but we can take advantage of modern hardware, i.e., graphics
processing units (GPUs), which have been designed for efficient tensor
operations. We will discuss this more in the next chapter. However, in
this chapter we will continue with the explicit notations used before this
sidebar because they completely expose the underlying mathematical
operations.

The architecture shown in Figure 5.2 can be reduced to most of the
classifiers we introduced so far. For example:

Perceptron: The perceptron has no intermediate layers; has a single
neuron in the output layer with a “pass through” activation
function: f(x) = x; and no softmax.

Binary logistic regression: Binary LR is similar to the perceptron,
with the only difference that the activation function of its output
neuron is the logistic: f = σ.

Multiclass logistic regression: Multiclass LR has multiple neurons
in its output layer (one per class); their activation functions are
the “pass through” function, f(x) = x; and it has a softmax.
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Algorithm 7: Stochastic gradient descent algorithm for the
training of neural networks.

1 initialize parameters in Θ

2 while not converged do
3 for each training example xi in X do
4 for each θ in Θ do
5 θ = θ − α d

dθCi(Θ)

6 end
7 end
8 end

5.2 Learning Algorithm for Neural Networks
At a very high level, one can view a neural network as a complex ma-
chinery with many knobs, one for each neuron in the architecture. In
this analogy, the learning algorithm is the operating technician whose
job is to turn all the knobs to minimize the machine’s output, i.e., the
value of its cost function for each training example. If a neuron increases
the probability of an incorrect prediction, its knob will be turned down.
If a neuron increases the probability of a correct prediction, its knob will
be turned up.

We will implement this learning algorithm that applies to any neural
network with a generalization of the learning algorithm for multiclass
logistic regression (Algorithm 6). The first key difference is that the
parameters we are learning are no longer a single weight vector and a
single bias term per class as in the multiclass LR. Instead, the neural
network parameters contain one weight vector and one bias term for
each neuron in an intermediate or final layer (see Figure 5.2). Because
the number of these neurons may potentially be large, let’s use a single
variable name, Θ, to indicate the totality of parameters to be learned,
i.e., all the weights and biases. We will also use θ to point to an individual
parameter (i.e., one single bias term or a single weight) in Θ. Under these
notations we can generalize Algorithm 6 into Algorithm 7, which applies
to any neural network we will encounter in this book.1

Note that the key functionality remains exactly the same between
Algorithms 6 and 7: in each iteration, both algorithms update their pa-
rameters by subtracting the partial derivative of the cost from their
1 We will revise this algorithm slightly in Chapter 6.
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current values. As discussed, this guarantees that the cost function in-
crementally decreases towards some local minimum. This observation is
sufficient to understand how to implement the training algorithm for
a FFNN using a modern machine learning library that includes auto-
differentiation such as PyTorch. Thus, the impatient reader who wants
to get to programming examples as quickly as possible may skip the
remainder of this chapter and jump to the next one for code examples.
However, we encourage the reader to stick around for the next sections
in this chapter, where we will look “under the hood” of Algorithm 7 to
understand better how it operates.

5.3 The Equations of Back-propagation
The key equation in Algorithm 7 is in row 5, which requires the com-
putation of the partial derivative of the cost function for one training
example Ci(Θ) with respect to all parameters in the network, i.e., all
edge weights and all bias terms. While this looks mathematically sim-
ple, it is not intuitive: how are we to calculate the partial derivatives
for parameters associated with neurons that are not in the final layer,
and, thus, do not contribute directly to the cost function computation?
To achieve this, we will implement an algorithm that has two phases:
a forward phase, and a backward phase. In the forward phase, the al-
gorithm runs the neural network with its current parameters to make
a prediction on the given training example i. Using this prediction, we
then compute the value of the cost function for this training example,
Ci(Θ). Then, in the backward phase we incrementally propagate this
information backwards, i.e., from the final layer towards the first layer,
to compute the updates to the parameters in each layer. Because of this,
this algorithm is commonly called back-propagation, or, for people in a
hurry, backprop.

Let us formalize this informal description. To do this, we need to
introduce a couple of new notations. First, because in this section we will
use only one training example i and refer to the same training parameters
Θ throughout, we will simplify Ci(Θ) to C in all the equations below.
Second, and more importantly, we define the error of neuron i2 in layer l
as the partial derivative of the cost function with respect to the neuron’s
2 Note that we are overloading the index i here. In Algorithm 7 we used it to

indicate a specific training example xi. Now we use it to indicate a specific
neuron.
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Algorithm 8: The back-propagation algorithm that computes
parameter updates for a neural network.

1 compute the errors in the final layer L, δLi , using the cost
function C (Equation 5.4)

2 backward propagate the computation of errors in all upstream
layers (Equation 5.5)

3 compute the partial derivates of C for all parameters in a layer l,
d
dbli

C and d
dwl

ij

C, using the errors in the same layer, δli
(Equations 5.6 and 5.7)

output:

δli =
d

dzli
C (5.3)

where zli is the output of neuron i in layer l before the activation function
f is applied. Intuitively, the error of a neuron measures what impact
a small change in its output z has on the cost C. Or, if we view z

as a knob as in the previous analogy, the error indicates what impact
turning the knob has. The error of a neuron is a critical component
in backpropagation: we want to adjust the parameters of each neuron
proportionally with the impact the neuron has on the cost function’s
value for this training example: the higher the impact, the bigger the
adjustment. Lastly, we use the index L to indicate the final layer of the
network, e.g., the layer right before the softmax in Figure 5.2. Thus, δLi
indicates the error of neuron i in the final layer.

Using these notations, we formalize the backpropagation algorithm
with the three steps listed in Algorithm 8. Step 1 computes the error
of neuron i in the final layer as the partial derivative of the cost with
respect to the neuron’s activation multiplied with the partial derivative
of the activation function with respect to the neuron’s output:

δLi =
d

daLi
C

d

dzLi
f(zLi ) (5.4)

This equation may appear daunting at first glance (two partial deriva-
tives!), but it often reduces to an intuitive formula for given cost and
activation functions. As a simple example, consider the case of binary
classification, i.e., a single neuron in the final layer with a logistic acti-
vation, coupled with the mean squared error (MSE) cost function. We
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will discuss the MSE cost in more detail in Chapter 6. For now, it is
sufficient to known that MSE is a simple cost function commonly used
for binary classification: C = (y − aL1 )

2, where y is the gold label for
the current training example, e.g., 0 or 1 assuming a logistic activa-
tion. That is, the MSE cost simply minimizes the difference between
the prediction of the network (i.e., the activation of its final neuron)
and the gold label. The derivative of the MSE cost with respect to the
neuron’s activation is: d

daL
1
C = 2(aL1 − y).3 The derivative of the logistic

with respect to the neuron’s output is: d
dzL

1
σ(zL1 ) = σ(zL1 )(1 − σ(zL1 ))

(see Table 3.1). Thus, δL1 in this simple example is computed as: δL1 =

2(aL1 − y)σ(zL1 )(1−σ(zL1 )) = 2(σ(zL1 )− y)σ(zL1 )(1−σ(zL1 )). It is easy to
see that this error formula follows our knob analogy: when the activation
of the final neuron is close to the gold label y, which can take values of
0 or 1, the error approaches 0 because two of the terms in its product
are close to 0. In contrast, the error value is largest when the classifier is
“confused” between the two classes, i.e., its activation is 0.5. The same
can be observed for any (differentiable) cost and activation functions
(see next chapter for more examples).

Equation 5.4 is easy to prove using a direct application of the chain
rule:

δLi =
∑
k

d

daLk
C

d

dzLi
aLk

=
d

daLi
C

d

dzLi
aLi

where k iterates over all neurons in the last layer. Note that we need
to sum over all neurons in the final layer in the first line of the proof
because C theoretically depends on all activations in the final layer.
However, neuron i impacts only its own activation, and, thus, we can
ignore all other activations (second line of the proof).

Equation 5.4 computes the errors in the last layer of the network. The
next back-propagation equation incrementally propagates the computa-
tion of errors into the upstream layers, i.e., the layers that are farther
to the left in Figure 5.2. That is, this equation computes the errors in a
layer l using the errors in the layer immediately downstream, l + 1, as
follows:

δli =
∑
k

δl+1
k wl+1

ki

d

dzli
f(zli) (5.5)

3 This is trivially derived by applying the chain rule.
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Figure 5.4 Visual helper for Equation 5.5.

where k iterates over all neurons in layer l + 1.

We prove this equation by first applying the chain rule to introduce
the outputs of the downstream layer, zl+1

k , in the formula for the error
of neuron i in layer l, and then taking advantage of the fact the outputs
in the downstream layer l+1 depend on the activations in the previous
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layer l. More formally:

δli =
d

dzli
C

=
∑
k

d

dzl+1
k

C
d

dzli
zl+1
k

=
∑
k

δl+1
k

d

dzli
zl+1
k

=
∑
k

δl+1
k

d

dzli
(
∑
j

wl+1
kj alj + bl+1

k )

=
∑
k

δl+1
k

d

dzli
(wl+1

ki ali)

=
∑
k

δl+1
k wl+1

ki

d

dzli
ali

=
∑
k

δl+1
k wl+1

ki

d

dzli
f(zli)

where j iterates over all neurons in layer l. Similar to the previous proof,
we need to sum over all the neurons in layer l + 1 (second line of the
proof) because the value of the cost function is impacted by all the
neurons in this layer. The rest of the proof follows from the fact that
zl+1
k =

∑
j w

l+1
kj alj + bl+1

k . Figure 5.4 provides a quick visual helper to
navigate the indices used in this proof.

Using Equations 5.4 and 5.5 we can compute the errors of all neurons
in the network. Next we will use these errors to compute the partial
derivatives for all weights and bias terms in the network, which we need
for the stochastic gradient descent updates in Algorithm 7. First, we
compute the partial derivative of the cost with respect to a bias term
as:

d

dbli
C = δli (5.6)

The proof of this equation follows similar steps with the previous two
proofs, but here we iterate over neurons in the same layer l (so we can
access the error of neuron i). Thus, we can ignore all neurons other than



90 Feed Forward Neural Networks

neuron i, which depends on this bias term:
d

dbli
C =

∑
k

d

dzlk
C

d

dbli
zlk

=
d

dzli
C

d

dbli
zli

= δli
d

dbli
zli

= δli
d

dbli
(
∑
h

wl
iha

l−1
h + bli)

= δli

where k iterates over all neurons in layer l, and h iterates over the
neurons in layer l − 1.

Similarly, we compute the partial derivative of the cost with respect
to the weight that connects neuron j in layer l−1 with neuron i in layer
l, d

dwl
ij

C, as:

d

dwl
ij

C = al−1
j δli (5.7)

The proof of this equation follows the same structure as the proof
above:

d

dwl
ij

C =
∑
k

d

dzlk
C

d

dwl
ij

zlk

=
d

dzli
C

d

dwl
ij

zli

= δli
d

dwl
ij

zli

= δli
d

dwl
ij

(
∑
h

wl
iha

l−1
h + bli)

= δlia
l−1
j

where k iterates over all neurons in layer l, and h iterates over the
neurons in layer l − 1.

Equations 5.4 to 5.7 provide a formal framework to update the pa-
rameters of any neural network (weights and biases). They also highlight
several important observations:

(i) Implementing a basic feed forward neural network is not that compli-
cated. Equations 5.4 to 5.7 rely on only two derivatives: the derivative
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Figure 5.5 Visualization of the vanishing gradient problem for the logistic
function: changes in x yield smaller and smaller changes in y at the two
ends of the function, which means that d

dx
σ approaches zero in the two

extremes.

of the activation function f , and the derivative of the cost function. In
theory, these could be hard-coded for the typical activation and cost
functions to be supported. The rest of the mathematical operations
needed to implement back-propagation are just additions and multi-
plications. However, in practice, there are some additional issues that
need to be addressed for a successful neural network implementation.
We will discuss these issues in Chapter 6.

(ii) Back-propagation is slow. As shown in the equations, updating the
network parameters requires a considerable number of multiplica-
tions. For real-world neural networks that contain millions of param-
eters this becomes a significant part of the training runtime. In the
next chapters we will discuss multiple strategies for speeding up the
training process such as batching multiple training examples and mul-
tiple operationes together (e.g., updating all bias terms in a layer with
a single vector operation rather than several scalar updates as in the
equations). When these tensor operations are moved onto a graph-
ics processing unit (GPU), which has hardware support for parallel
tensor operations, they can be executed much faster.

(iii) Depending on the activation function, its partial derivative with re-
spect to model parameters may be too small, which slows down the
learning process. This happens because the equations to compute the
errors in the network layers (Equations 5.4 and 5.5) both depend on
this derivative. Multiplying this derivative repeatedly, as required by
the recursive process described in the two equations, may have the
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unintended side effect that some errors will approach zero, which, in
turn, means that the network parameters will not be updated in a
meaningful way. This phenomenon is commonly called the “vanish-
ing gradient problem.” Figure 5.5 shows a visualization of this phe-
nomenon for the logistic activation function. For this reason, other
activations that are more robust to this problem are commonly used
in deep learning. We will discuss some these in Chapter 6.

5.4 Drawbacks of Neural Networks (So Far)
In this chapter we generalized logistic regression into multi-layered neu-
ral networks, which can learn nonlinear functions. This is a major ad-
vantage over LR, but it can be also be a drawback: because of their flex-
ibility, neural networks can “hallucinate” classifiers that fit the training
data well, but fail to generalize to previously unseen data (Domingos,
2015). This process is called overfitting. We will discuss multiple strate-
gies to mitigate overfitting in Chapter 6.

In addition to overfitting, the training process of neural networks may
suffer from other problems. We discussed the vanishing gradient prob-
lem in the previous section. Another problem commonly observed when
training neural networks is the tendency to “Tony Hawk” the data, which
slows down convergence, or prevents it all together. Chapter 6 discusses
optimization algorithms that reduce this phenomenon.

Further, similar to the perceptron and LR, the neural networks cov-
ered so far continue to rely on hand-crafted features. We will address
this limitation in Chapter 8. Lastly, feed forward neural networks focus
on individual predictions rather than structured learning (i.e., where
multiple predictions such as the part-of-speech in a sentence are jointly
generated). We will start introducing structured prediction using neu-
ral networks in Chapter 10. This will open the door to other important
NLP applications such as part-of-speech tagging, named entity recogni-
tion, and syntactic parsing.

5.5 Historical Background
While the idea of neural networks was introduced by McCulloch and
Pitts (1943), their network did not learn. The first general-purpose
multi-layer neural network that could learn from data was proposed by
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Ivakhnenko and Lapa (1966). However, they used a simpler (and more
limited) method to train it rather than the back-propagation algorithm
we discussed in this chapter. Back-propagation was co-discovered in the
early 1960s by Kelley (1960); Dreyfus (1962), and was formalized in the
modern form we covered here by Linnainmaa (1970) (in a Master’s the-
sis!). However, he did not connect back-propagation to the training of
neural networks. The first connection was made in the early 1980s by
Werbos (1982) and soon after by Rumelhart et al. (1985).

Thus, we have had an assembled puzzle that connected “deep” neural
networks to general-purpose training using back-propagation for almost
40 years now. So, why did it take so long for neural networks to achieve
the tremendous successes we see today? There are probably at least
four reasons for the slow start. First, the interest in (and funding for)
deep learning was negatively impacted by the “AI winter” we mentioned
in Chapter 2 (despite the fact that the drawbacks observed by Minsky
and Papert (1969) applied to the perceptron not to multi-layer neural
networks). Second, it took a series of “tricks” (discussed in the next
chapter) to bring stability to the training process of multi-layer net-
works. Third, neural networks tend to require more data to learn than
other machine learning algorithms. Until such datasets became avail-
able in image and language processing, other algorithms such as the
support vector machines developed by Cortes and Vapnik (1995) domi-
nated. One research direction that mitigated the lack of large annotated
datasets was to pre-train neural networks using unsupervised algorithms.
This idea was first proposed by Schmidhuber (1992) for recurrent neu-
ral networks (which we will introduce in Chapter 10). Pre-training is
widely used today thanks to the advent of transformer networks, which
are more amenable to expensive pre-training due to their architecture
(see Chapters 12, 13, 14, 15, and 16). Lastly, deep learning was widely
adopted when general-purpose graphics processing units (GPU) became
available. General-purpose GPUs, which were originally developed for
graphics applications such as video games, provide hardware support
for parallel matrix operations, which speed up the training and infer-
ence of neural networks considerably. This was first observed by Raina
et al. (2009) and Cireşan et al. (2010), and then scaled up to a large
network by Krizhevsky et al. (2012).
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5.6 References and Further Readings
For a comprehensive description of deep learning we recommend (Good-
fellow et al., 2016). We also found the online book of Nielsen (2019) to
be an approachable introduction to deep learning, more inline with the
scope of our book.

5.7 Summary
This chapter exposed us to feed forward neural networks that assemble
multiple “neurons” into arbitrary structures, in which each neuron is
itself a generalization of the perceptron and logistic regression we saw
in the previous chapters. Despite the more complicated structures pre-
sented, we showed that the key building blocks remain the same: the
network is trained by minimizing a cost function. This minimization is
implemented with back-propagation, which adapts the gradient descent
algorithm introduced in the previous chapter to multi-layer neural net-
works.



6
Best Practices in Deep Learning

The previous chapter introduced feed forward neural networks and demon-
strated that, theoretically, implementing the training procedure for an
arbitrary FFNN is relatively simple: Algorithm 7 describes the learning
algorithm that relies on stochastic gradient descent, and Algorithm 8
explains how the actual parameter updates are computed using back-
propagation. Unfortunately, as described in Section 5.4, neural networks
trained this way will suffer from several problems such as stability of
the training process, i.e., slow convergence due to parameters jumping
around a good minimum, and overfitting. In this chapter we will describe
several practical solutions that mitigate these problems. Note that most
of these solutions are implemented in modern deep learning libraries
such as PyTorch. We will see them in action in the next chapter.

6.1 Mini-batching
Algorithm 7 updates the network parameters after each individual train-
ing example is seen. This means that the network changes its parameters
at the fastest rate possible, with gradients that may have high vari-
ance (due to training examples that may be very different). These rapid
changes may cause the resulting network to exhibit large differences in
behavior (i.e., the network makes different predictions in response to the
same inputs) in short time. If you wish, stochastic gradient descent is a
training process that just had a triple espresso. Being highly caffeinated
has several advantages and disadvantages. The pluses of this strategy
are:

(i) In some cases, stochastic gradient descent converges to a good out-

95
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come more quickly due to the rapid parameter updates. This usually
happens on easier problems, where the cost function has a minimum
that is easy to find and yields a good solution.

(ii) Stochastic gradient descent has the capacity to “jump out” of local
minima encountered during training due to the high variance in the
gradients corresponding to different training examples. That is, sim-
ilar to the function shown earlier in Figure 3.3, the cost functions
used by neural networks are not necessarily convex. At some point in
the training process, i.e., when only a subset of the training examples
have been seen, the learning process may converge to a poor mini-
mum, e.g., similar to the one in the right part of the function shown
in Figure 3.3. However, the following parameter updates, which can
be drastically different from the previous ones that led to the subop-
timal solution, increase the probability that the neural network leaves
this local minimum and continues training.

(iii) Last but not least, stochastic gradient descent is easy to implement
and has minimal memory requirements, i.e., only one training exam-
ple has to be kept in memory at a time.

The drawbacks of stochastic gradient descent are:

(i) The “jumping out” of suboptimal solutions advantage often trans-
lates into the disadvantage of slower convergence because the network
“jumps around” good solutions rather than settling on one.

(ii) Stochastic gradient descent is computationally expensive due to the
frequent updates of the network parameters. Further, these parameter
updates are hard to parallelize due to the sequential traversal of the
training examples.

The opposite of stochastic gradient descent is batch gradient descent,
which updates the network parameters only after all the training ex-
amples have been seen. That is, batch gradient descent still computes
the parameter gradients after each training example is processed, but
updates them only at the end of each epoch with the average of all
previously-computed gradients. The process is summarized in Algorithm 9.
In the algorithm, the variables gradθ keep track of the sum of the par-
tial derivatives of C with respect to θ for each training example i, and
|X| indicates the size of the training dataset X. If stochastic gradient
descent is a highly-caffeinated training process, batch gradient descent
had a calming beverage such as chamomile tea. The advantages and
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Algorithm 9: Batch gradient descent algorithm.
1 initialize parameters in Θ

2 while not converged do
3 for each θ in Θ do
4 gradθ = 0

5 end
6 for each training example xi in X do
7 for each θ in Θ do
8 gradθ = gradθ +

d
dθCi(Θ)

9 end
10 end
11 for each θ in Θ do
12 θ = θ − α

gradθ

|X|
13 end
14 end

disadvantages of this sedated training algorithm are opposite those of
stochastic gradient descent. That is, its main advantages are:

(i) The average gradients used to update the network parameters tend
to be more stable than the individual gradients used in stochastic
gradient descent, and this often leads to convergence to better (local)
minima on some problems.

(ii) Batch gradient descent is more computationally efficient because of
the fewer updates of the network parameters. Further, batching is
better suited for parallel implementations. That is, the for loop in
line 6 of Algorithm 9 can theoretically be executed in parallel because
the individual gradients are only used at the end of the loop.

And its disadvantages are:

(i) Batch gradient descent may prematurely converge to a less-than-ideal
solution because its ability to “jump out” of an undesired local min-
imum is reduced.

(ii) Despite the computational efficiency within an individual epoch, batch
gradient descent may take longer to train (i.e., more epochs) because
the network parameters are updated only once per epoch.

(iii) The implementation of batch gradient descent is more complicated
than that of stochastic gradient descent because it needs to keep track
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Algorithm 10: Mini-batch gradient descent algorithm.
1 initialize parameters in Θ

2 while not converged do
3 for each mini-batch M sampled from X do
4 for each θ in Θ do
5 gradθ = 0

6 end
7 for each training example xi in M do
8 for each θ in Θ do
9 gradθ = gradθ +

d
dθCi(Θ)

10 end
11 end
12 for each θ in Θ do
13 θ = θ − α

gradθ

|M|
14 end
15 end
16 end

of the sum of all gradients for each network parameter throughout an
epoch.

These two extreme strategies suggest that a middle ground may be
the best practical solution. This middle ground is called mini-batch gra-
dient descent. Similar to batch gradient descent, the mini-batch variant
updates the network parameters only after a batch is completed, but
its batches are smaller. For example, typical mini-batch sizes for many
NLP problems are 32 or 64 training examples. The mini-batch gradient
descent algorithm is described in Algorithm 10. Similar to Algorithm 9,
the variables gradθ keep track of the sum of the partial derivatives of C
with respect to θ for each training example i in a given mini-batch M.
They are reset at the start of each mini-batch (lines 4 – 6), and are used
to update the parameter values after each mini-batch completes (lines 12
– 14). |M| indicates the number of training examples in the mini-batch
M.

On the spectrum of caffeinated beverages, mini-batch gradient de-
scent consumed a green tea, a beverage that provides just enough en-
ergy without the jitters that may be associated with large espressos.
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More formally, the advantages of mini-batch gradient descent combine
the best traits of the previous two training algorithms:

(i) Mini-batch gradient descent tends to robustly identify good local
minima because it reduces the “jumping around” disadvantage of
stochastic gradient descent, while keeping some of its “jumping out”
of undesired minima advantage.

(ii) Mini-batch gradient descent allows for efficient, parallel implementa-
tion within an individual mini-batch. We will show how this is done
in PyTorch in the next chapter.

The main disadvantages of mini-batch gradient descent are:

(i) Similar to batch gradient descent, its implementation is somewhat
more complicated than that of stochastic gradient descent due to the
additional bookkeeping necessary for each mini-batch.

(ii) More importantly, mini-batch gradient descent introduces a new hy-
per parameter, i.e., a variable that needs to be tuned outside of the
actual training process: the size of the mini-batch. Unfortunately, the
size of the mini-batch tends to be specific to each task and dataset.
Thus, the developer must search for the best mini-batch size through
an iterative trial-and-error tuning process, where various sizes are
used during training, and the performance of the resulting model is
evaluated on a separate tuning (or development) partition of the data.

In the next section we describe other optimization algorithms that
further increase the stability of the training process.

6.2 Other Optimization Algorithms
Beyond mini-batching, several improvements have been proposed to in-
crease the robustness of gradient descent algorithms. The first one we
will discuss is momentum (Qian, 1999). Figure 6.1 provides a simple
real-world analogy for it: imagine two sleds going down a hill, and about
to encounter a ravine. Sled 1 starts right before the ravine, whereas sled
2 starts further up the hill. Clearly, sled 1 is more likely to get stuck in
the ravine than sled 2, which carries more speed (or momentum) as it
enters the ravine, and is more likely to escape it. Sled 1 is the equivalent
of the previous mini-batch gradient algorithm, which is more likely to
get stuck in a local minimum (the ravine). Algorithm 10 shows that for
each mini-batch, i.e., step down the hill, we initialize each gradient, i.e.,



100 Best Practices in Deep Learning

Figure 6.1 Illustration of momentum: sled 1 is more likely to get stuck
in the ravine than sled 2, which starts farther up the hill, and carries
momentum when it enters the ravine.

the speed at this moment, (line 5) with zero. That is, we forget about the
speed we had previously, and compute the current speed simply based
on the slope under our sled at this time. Gradient descent with momen-
tum fixes this by initializing the gradients with a fraction of the final
gradients computed for the previous mini-batch. That is, at time t, i.e.,
when the tth mini-batch is processed, line 5 in Algorithm 10 changes to:

gradt
θ = γ gradt−1

θ (6.1)

where gradt−1
θ is the gradient for θ computed for the previous mini-

batch, and γ is a hyper parameter with values between 0 and 1,1 which
indicates how much of the previous momentum we want to preserve.

A variant of momentum, called Nesterov momentum (Nesterov, 1983),
builds upon this intuition by also changing line 9 of Algorithm 10. In
particular, Nesterov momentum does not compute the partial derivative
of the cost function, d

dθCi, using the actual parameters in Θ. Instead, this
algorithm subtracts the momentum, i.e., a fraction of gradt−1

θ , from each
parameter θ when computing Ci. The intuition behind this operation is
that this allows the algorithm to “peak into the future,” by using values
that estimate the parameter values at time t+1. This is possible because
we know through the combination of the momentum initialization (dis-
cussed in the previous paragraph) and the actual update operation (line
13 in Algorithm 10) that the value of each parameter θ at the end of this
1 Common values for γ are around 0.9.
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mini-batch will be computed by subtracting a fraction of its correspond-
ing momentum from the old value of θ.2 Thus, Nesterov momentum is
informed by both the past (through the momentum initialization) and
the future (through the modified parameter values when computing the
cost function). Empirically, it has been shown that this brings more
stability to the training process (Dean et al., 2012).

Another complication of gradient descent is identifying a good learn-
ing rate, i.e., an appropriate value for the hyper parameter α in line 13
of Algorithm 10. Any deep learning practitioner will quickly learn that
the performance of most deep learning models depends heavily on the
learning rate used. In the opinion of the authors, the learning rate is the
most important hyper parameter to be tuned. A value that is too big
will yield faster training, but may cause the training process to “jump”
over good minima. On the other hand, a value that is too small may
cause training to be too slow, and to risk getting stuck in a subopti-
mal minimum (i.e., the ravine in Figure 6.1). Further, the learning rate
value should be adjusted based on the timeline of training. Earlier in the
process, a larger training rate helps approaching a good solution more
quickly from the randomly chosen starting point, but later in the course
a smaller value is generally preferable to avoid jumping out of good
minima. Lastly, different features likely require different learning rates.
That is, using a single learning rate may cause the frequent features, i.e.,
features commonly observed with non-zero values in training examples,
to dominate in the learned model because their associated parameters,
i.e., the edges connecting them to the output neurons, will be updated
more frequently. Thus, ideally, we would like to perform larger updates
for parameters associated with less frequent features (which may still
contain useful signal!) so they have a say in the final model.

The solution to all of the above problems is to use adaptive learning
rates, i.e., have a distinct learning rate for each parameter θ in the net-
work, and allow these values to change over time. A common strategy is
to have each learning rate be inversely proportional to the square root
of the sum of the squares of the gradients observed for this parame-
ter in each mini-batch up to the current one. That is, if we denote the
sum of squares of the gradients for parameter θ as Gθ, then line 13 in
Algorithm 10 becomes:

2 We will, of course, also subtract the other d
dθ

Ci computed for this mini-batch,
but these are unknown at this time.



102 Best Practices in Deep Learning

θ = θ − α√
Gθ + ϵ

gradθ

|M|
(6.2)

where ϵ is a small constant to avoid division by zero. There are several
important observations about this seemingly simple change:

• Because Gθ is distinct for each θ, this formula yields different learning
rates for different parameters.

• The summation of squares in Gθ guarantees that Gθ monotonically
grows over time, regardless of the sign of the gradients. Thus, this
formula captures our temporal intuition: learning rates will be larger
in the beginning of the training process (when Gθ is small), and smaller
later (when it is larger).

• Similarly, Gθ guarantees that parameters associated with frequent fea-
tures will get smaller updates, while parameters associated with infre-
quent features will receive larger ones. This is because the gradients
of parameters associated with frequent features will more often have
non-zero values, which will lead to larger values for Gθ.

Most modern variants of gradient descent incorporate some form of
momentum and adaptive learning rates. For example:

• The AdaGrad algorithm uses Nesterov momentum and the adaptive
learning described above (Duchi et al., 2011).

• AdaDelta (Zeiler, 2012) and RMSProp3 address the fact that Ada-
Grad’s learning rates are continuously diminishing due to the ever-
increasing Gθ. They both achieve this by changing the formula of Gθ

to iterate only over the most recent few gradients. Further, instead of
using a straight summation, these algorithms use a decaying average,
where the contribution of older gradients decreases over time.4

• Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015) builds
on the previous two algorithms by also applying the same decaying
average idea to the actual gradient values. That is, in Equation 6.2,
Adam does not use the actual gradθ

|M | value computed for this mini-
batch, but a decaying average of the past few gradients.

All these algorithms are supported by most deep learning libraries
such as PyTorch. A superficial analysis of NLP publications performed
3 RMSProp was proposed by Geoff Hinton but never formally published.
4 For the exact math behind this change, and a more expanded discussion of

optimization algorithms, we recommend Sebastian Ruder’s excellent blog post,
available here: https://ruder.io/optimizing-gradient-descent/.

https://ruder.io/optimizing-gradient-descent/
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Figure 6.2 Comparison of the tanh (red continuous line) and logistic
(blue dashed line) functions. The derivative of the tanh is larger than
the derivative of the logistic for input values around zero.

by the authors suggests that Adam and RMSProp seem to be the ones
most commonly used for NLP at the time this book was written.

6.3 Other Activation Functions
In the previous chapter, we mentioned that one important drawback
of the logistic function (and its multiclass equivalent, the softmax) is
the vanishing gradient problem. This is caused by the fact that the
derivative of the logistic tends to be small. When several such derivatives
are multiplied during back-propagation, the resulting value may be too
close to zero to impact the network weights in a meaningful way. One
solution to the vanishing gradient problem is to use other activation
functions that have larger gradient values. One such activation function
is the hyperbolic tangent function, or tanh:

tanh(x) =
e2x − 1

e2x + 1
(6.3)

Figure 6.2 shows a plot of the tanh function overlaid over the plot
of the logistic function. The figure highlights the key advantage of the
tanh function: the slope of the tanh is steeper than the logistic’s, and,
thus, its derivative has larger values than the derivative of the logistic
for most input values. This is the key reason why tanh suffers less from
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(a) (b)

Figure 6.3 The ReLU (a) and Leaky ReLU (b) activation functions.

the vanishing gradient problem, and why it is usually preferred over the
logistic. However, as shown in the figure, for extreme input values (very
large or very small), tanh also exhibits saturated gradients, i.e., partial
derivatives with very small values. One activation function that avoids
this problem is the rectified linear unit, or ReLU:

ReLU(x) = max(0, x) =
{

0 x < 0

x otherwise (6.4)

Figure 6.3 (a) shows a plot of this function.5 The figure shows that for
positive input values ReLU grows at a constant rate, without exhibiting
the saturated gradients of the tanh of logistic functions, both of which
taper at 1. In practice, this means that the training process for networks
that rely on ReLU activation functions tends to converge faster than
those that use tanh or logistic activations. As an empirical rule of thumb,
ReLU tends to learn faster than tanh, which usually converges more
quickly than logistic.

A second, more subtle advantage of ReLU is caused by the fact that,
as the figure shows, the function’s value is 0 for all negative input values.
This means that all neurons with ReLU activations whose dot product
of input values and weights is negative become inactive, i.e., their output
is 0. Glorot et al. (2011) observed that “after uniform initialization of
the weights, around 50% of the hidden units’ continuous output values
are real zeros” in such networks. This percentage increases when regular-
ization is used (see Section 6.5). But why would sparse representations

5 Figure 6.3 shows that ReLU and its variants are not differentiable for x = 0. For
this input value, we typically set the derivative of ReLU to an arbitrary value.
e.g., 1 or 0.5.
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of neural networks be preferred? It turns out that sparsity has several
advantages (Glorot et al., 2011):

• It allows a network to learn more flexible representations. That is,
varying the number of neurons with non-zero activations in each layer
allows better control of the actual dimensionality assigned to each
layer (rather than relying on the hard-coded structure).

• It yields better explainability or better “information disentangling.”
That is, in the usual, dense networks where most activations are non-
zero it is hard to understand what the underlying reason for a given
output is because all neurons contributed something to the final ac-
tivation. Further, such networks tend to be more sensitive to small
changes in inputs. Both these drawbacks are mitigated by sparse net-
works. They can explain their outputs easier because a smaller number
of neurons contributes to the final activations. Further, some small in-
put changes are dampened by the inactive neurons and, thus, do not
affect the network’s outputs.

• Sparse representations are more likely to be linearly separable, which
means it is easier and cheaper to learn a good classifier.

A third advantage of ReLU is its computational simplicity. Unlike lo-
gistic and tanh, which require exponential operations, ReLU relies solely
on the much simpler max function.

One drawback of ReLU’s hard saturation at 0 is an extreme form of
vanishing gradient commonly called the “dying ReLU.” That is, not sur-
prisingly, the derivative of an inactive ReLU neuron is always 0, which
means that weights immediately downstream of it are not updated dur-
ing back-propagation (see Equation 5.7). The solutions to this problem
are variants of ReLU that keep the general ReLU behavior, but avoid
the hard saturation at 0. One such function is Leaky ReLU:

LeakyReLU(x) =

{
αx x < 0

x otherwise (6.5)

where α typically takes values around 0.01. Figure 6.3 (b) shows a plot
of Leaky ReLU.

All in all, this discussion suggests that, while some recommendations
can be made, there is no universal answer to the question: which acti-
vation function is best? Many activation functions have been proposed
(we recommend you check your favorite deep learning library’s docu-
mentation for the list of supported activation functions). All activa-
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tion functions try to balance multiple desired, but sometimes conflicting
properties such as mitigating vanishing gradient and producing sparse
representations. Which one works best for you is likely to depend on
the problem and data you work on at the moment. Be prepared to try
several.

6.4 Cost Functions
So far, we have seen three cost functions in the book: cross entropy and
binary cross entropy (Chapter 3) and, very briefly, the mean squared
error (MSE) cost (Chapter 5). These are probably the most common cost
functions in NLP, so it is worth discussing them slightly more formally.

Recall that a cost function must have several properties: (a) it should
take only positive values, (b) it should measure the distance between
the classifier predictions and the corresponding correct (or gold) labels,
i.e., the higher the value of the cost function the more incorrect the
underlying classifier is; and (c) it should be differentiable, so we can
“plug” it in some form of the gradient descent algorithm. All three cost
functions, listed in Table 6.1, have these properties. Let us convince
ourselves that this is indeed the case.

First, the mean squared error (MSE) as shown here is designed for
binary classification. That is, the underlying network has a single final
neuron, whose activation (aL1 ) is typically produced with either a logistic
function or a hyperbolic tangent function. In the former case, the value of
aL1 should approach 1 for the positive class, and 0 for the negative class.
In the latter situation, the positive class has label 1, and the negative
one -1. Regardless of the choice of activation function, MSE always takes
positive values due to the square in its formula. Also, MSE explicitly
measures the distance between the classifier prediction and the gold
label, and this distance is differentiable. MSE is easy to explain and is
trivial to implement, but it has one major disadvantage: it may lead to
slow learning. To understand this disadvantage let’s revisit Equation 5.4
in the context of MSE. For a binary classifier with a single final neuron,
the error in the final layer is: δL1 = d

daL
1
C d

dzL
1
f(zL1 ). For a single training

example, this error becomes: δL1 = 2(aL1 −y) d
dzL

1
f(zL1 ), where y is the gold

label for the corresponding example. Thus, δL1 depends on the derivative
of the activation function, which becomes vanishingly small at the two
ends of the function, for both the logistic and tanh functions. Because
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the weight and bias updates in any neural network (see Equations 5.6
and 5.7) depend on δL1 , a neural network trained using the MSE cost is
likely to experience learning slowdown.

The binary cross entropy addresses this limitation. Before we explain
how, let us convince ourselves that the binary cross entropy is a proper
cost function. Because the logarithms in its formula take probabilities as
parameters, we are restricted here to logistic activation functions for aL1 .
Thus, the summation in the formula is always smaller or equal to 0 (the
natural logarithm of a number smaller than 1 is negative), and the re-
sulting overall value is larger or equal to 0. Further, binary cross entropy
measures the quality of the classifier. For example, a good classifier that
produces an aL1 approaching 1 for a positive label (y = 1) will have a
binary entropy cost of − log aL1 ≈ − log 1 = 0. At the opposite extreme, a
really bad classifier that produces aL1 approaching 1 for a negative label
(y = 0) will have a binary entropy cost of − log(1− aL1 ) ≈ − log 0 = ∞.

To understand why the binary cross entropy reduces the learning slow-
down, let us derive δL1 in this context, for a single training example with
gold label y:6

δL1 =
d

daL1
C

d

dzL1
f(zL1 )

=
d

daL1
(−y log aL1 − (1− y) log(1− aL1 ))

d

dzL1
σ(zL1 )

= (− y

aL1
+

1− y

1− aL1
)

d

dzL1
σ(zL1 )

=
aL1 − y

aL1 (1− aL1 )

d

dzL1
σ(zL1 )

=
aL1 − y

σ(zL1 )(1− σ(zL1 ))

d

dzL1
σ(zL1 )

=
aL1 − y

σ(zL1 )(1− σ(zL1 ))
σ(zL1 )(1− σ(zL1 ))

= aL1 − y

Thus, surprisingly, δL1 for binary cross entropy does not depend on the
derivative of the activation function! Because of this, the binary cross en-
tropy cost function is more resilient to learning slowdown, which makes it

6 We recommend that the user verifies this derivation using the information in
Table 3.1.
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the most common choice for binary classification problems implemented
with networks that have logistic activation in the output layer.

The cross entropy cost7 (last row in Table 6.1) is simply a generaliza-
tion of binary cross entropy to multiclass classification. Recall from the
previous chapter that networks designed for multiclass classification have
one neuron dedicated to each class in the output layer, and these neu-
rons are usually followed by a softmax layer such that the final outputs
form a probability distribution (see Figure 5.2). For such architectures
the cross entropy cost maximizes the probability of the gold label for
each training example i: p(yi|xi;W, b). Because the denominator in the
softmax formula iterates over the other activations (see Equation 3.16),
maximizing the probability of the gold label for a given training exam-
ple has the desired side effect of also minimizing the probabilities of all
other (incorrect) labels for the same data point. Cross entropy is the
preferred cost function for multiclass classification in most NLP tasks
for the same reason binary cross entropy is the favored cost function for
binary classification.

6.5 Regularization

In three of the four previous sections in this chapter we discussed tech-
niques to improve the stability of the training process for neural networks
(e.g., mini-batching, improved optimizers, and better cost functions).
Regularization is a fourth common technique used for this purpose. Re-
call from Chapter 2 that regularization is a family of techniques that
control for the noise that is potentially present in the training data.
Implementation-wise, regularization methods control for undesired fluc-
tuations in parameter (i.e., weights or bias terms) values that may occur
when the training process is not stable due to exposure to noise.

In Chapter 2 we have seen the averaged perceptron as one simple
regularization method. Moving the same intuition into the space of cost
functions, regularization is implemented for neural networks by adding
an additional term to the cost:

7 Goodfellow et al. (2016) (Section 5.5) point out that calling this cost function
“cross entropy” is a misnomer, as the actual cross entropy formula is more
complex. However, minimizing the actual cross entropy is equivalent to
minimizing the formula in Table 6.1. For this reason, this abuse of terminology is
widely spread. We will continue to use it throughout this book.
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Creg(W, b) = C(W, b) + λR(W, b) (6.6)

where C(W, b) is any cost function without regularization such as the
ones listed in Table 6.1, R is the new regularization function, and λ is a
positive number (usually a small one) that indicates how much impor-
tance to put on the regularization component of the cost. Informally,
any implementation of R guarantees that minimizing R minimizes the
network’s parameter values.

Intuitively, there is a tug of war8 between the C and R functions in
the above equation when Creg is minimized. On one hand, C needs to
be minimized, which has the effect of increasing the values of certain
weights and biases, e.g., to maximize the probabilities of the gold labels
for the cross entropy cost. On the other hand, minimizing R has, by
definition, the effect of explicitly minimizing all weight and bias values,
which keeps the former component in check, and has the desired effect
of “squishing” unreliable parameter values.

There are many possible implementations for the regularization func-
tion R. L2 regularization is probably the most common one:

R(W, b) =
V∑
i=1

v2i (6.7)

where vi iterates over all parameters in the network, i.e., edge weights
and bias terms, and V is the total number of weights and biases in the
network.9 In plain language, L2 regularization is simply the sum of the
squared values of the weights and biases in the given network.

So, why would adding such a regularization term to the cost function
have the effect of mitigating the parameter value fluctuation? To under-
stand this, recall that gradient descent updates each network parameter
vi (again, these parameters include all weights and biases) by subtract-
ing the partial derivative of the cost with respect to vi, d

dvi
Creg(W, b),

from the current value of vi. For each vi, the partial derivative of the L2
regularization, which is part of Creg, is: d

dvi
R(W, b) = 2vi. Thus, dur-

ing each back-propagation step, in addition of subtracting the partial
derivative of the original C, we also subtract 2λvi from each parameter
vi. This value is proportional to vi: large when vi is large, and small
8 https://en.wikipedia.org/wiki/Tug_of_war
9 The more mathematically-inclined reader may have realized that the name L2

regularization comes from the fact that this function is the square of the L2
norm of the vector containing all network parameters vi.

https://en.wikipedia.org/wiki/Tug_of_war
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otherwise. This has the nice effect of more aggressively reducing large
parameter values (which may occur when training is not stable) than
small ones.

Another common regularization function is L1 regularization,10 which
is simply the sum of the parameter values:

R(W, b) =
V∑
i=1

vi (6.8)

Because the partial derivative of L1 regularization with respect to vi is
constant, the additional term introduced in d

dvi
Creg(W, b) by L1 reg-

ularization is simply the constant λ. In practice, this means that L1
regularization “squishes” the parameter values by a constant value in
each back-propagation step, regardless of the original values of these
parameters. The consequence of this is that L1 regularization reduces
parameter values that are small more aggressively than L2, which pro-
duces sparser networks (i.e., with more edge weights reduced to 0).

Empirically, L2 regularization tends to perform better than L1 for
NLP tasks. But, as mentioned, L1 produces sparser networks, which
can be represented in memory more efficiently. All in all, most forms of
regularization (L1, L2, and others) are trivial to implement (they are
just an additional, simple term in the cost function), and they tend to
be beneficial.

6.6 Dropout
Dropout can be seen as another simple regularization strategy. However,
instead of changing the cost function used to train the neural network
to encourage weight “squishing,” dropout changes the structure of the
network during training. That is, for each training example, dropout
ignores (or “drops”) network neurons, as well as their incoming and
outgoing connections, with probability p. For example, if p = 0.3, the
network will remove 30% of its neurons on average, for each training
example. Figure 6.4 visualizes this process for a simple feed-forward
network (Figure 6.4 (a)), and two views obtained in different dropout
iterations (Figure 6.4 (b) and (c)).
10 Similarly, L1 regularization is equivalent to the L1 norm of the vector containing

all network parameters vi. However, this parallel to linear algebra is not very
important to our discussion, so we will ignore it from now on.
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(a) (b) (c)

Figure 6.4 A simple neural network (a), and two views of it after dropout
is applied (b and c). Greyed out nodes and edges are dropped out
and, thus, ignored during the corresponding forward pass and back-
propagation in (b) and (c).

An important implementation detail about dropout is that dropout is
applied only during training. That is, at testing time, the entire network,
e.g., the one in Figure 6.4 (a), is used. This difference has the undesired
effect that the output values generated by the network during training
are smaller, i.e., only 1 − p of the corresponding values seen during
testing. For example, while the full network shown in Figure 6.4 (a) has
eight neurons, the one in Figure 6.4 (b) has only six. Thus, on average,
we expect the output of the final neuron in Figure 6.4 (b) to be only 6

8

of the output of the original network. This introduces a problem, as it is
best if the networks used in training and testing are similar, otherwise
the weights learned during training will not be effective. This issue is
solved in deep learning libraries with one of the two following strategies.
The first strategy scales down by p the output of each neuron during
testing. The second strategy scales up by 1

p the output of each active
neuron (i.e., not dropped out) during training. The first strategy has
the advantage of a simpler training procedure (no need to worry about
scaling during training), but it complicates testing. That is, the one must
remember the dropout probability used during training, and scale down
neuron outputs accordingly during testing. The second strategy has the
opposite benefits: more complicated training, but simpler testing that
requires no knowledge about how dropout was applied during training.

The hyper parameter p is chosen based on the performance of the
trained network on a development dataset. In many NLP tasks, typical
values for p range between 20 and 30%.

There are two explanations for why dropout is useful. The first is that
dropout forces the remaining nodes in the network to take more respon-
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sibility for transforming the received inputs into the correct prediction.
The other side of the coin is that because dropout uses sparser net-
works, it encourages the learning of sparser representations, i.e., learn-
ing smaller weights for neurons that the network learns can be safely
ignored. This is exactly what regularization does as well! The second
explanation is that dropout can be seen as an average of many different
networks, one for each training example. For example, the training pro-
cedure may see the network in Figure 6.4 (b) for one training example,
and the one in Figure 6.4 (c) for another example. But because these
networks sample from the same group of neurons, the training procedure
ends up aggregating all these updates into the same overall network, ef-
fectively learning an average of all the dropout views. Intuitively, this is
very similar to the average perceptron we have seen in Chapter 2, with
exactly the same benefits as discussed there.

6.7 Temporal Averaging
Temporal averaging is yet another simple strategy for constructing an
ensemble model that builds upon the intuition behind the average per-
ceptron. Temporal averaging works by averaging the network weights at
the end of the best training epochs. More formally, temporal averaging
is implemented through the following steps:

(i) At the end of each training epoch, e.g., after each iteration in the
outermost while loop in Algorithm 10, the performance of the cur-
rent network is evaluated on a development dataset, and the current
weights are all saved.

(ii) After training completes, all epochs are sorted in descending order of
their development performance.

(iii) The weights from the top k best epochs are averaged into the final
model. The hyper parameter k is empirically chosen based on the
performance of the final model on the development partition. Typical
values range between 3 and 5.

In other words, temporal averaging is similar to the average perceptron,
but the model snapshots that are averaged are not created every time
the model is updated (which would be after each training example for
gradient descent!) but less frequently, e.g., at the end of an epoch. While
less popular than dropout, in the experience of the authors temporal
averaging is just as effective.
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In the last few sections we have discussed three different regularization
strategies: “traditional” regularization through the cost function (Sec-
tion 6.5), dropout (Section 6.6), and the temporal averaging discussed in
this section. These three techniques are largely complementary to each
other, and, because of this, often combined.

6.8 Parameter Initialization and Normalization
As we discussed before, gradient descent does not find the global mini-
mum of the cost function but rather its nearest minimum. Thus, where
we start matters. In other words, it is important to initialize the param-
eters of the network to be trained (i.e., edge weights and bias terms)
to values that increase our chances of finding a good solution. There
are several rules of thumb on what one should and should not do when
initializing the network parameters:

(i) The parameters should be initialized randomly. It is trivial to observe
that if all parameters were initialized with the same value, the network
will learn the same feature for all its neurons. In contrast, initializing
the parameters to different (random) values forces the network to
assign different meaning to each of its neurons, which is the desired
behavior.

(ii) The initial parameter values should not be too small. Values that are
exceedingly small lead to the vanishing gradient problem, which slows
down learning or stops it all together.

(iii) On the other hand, parameter values should not be too large either.
Large parameter values yield large parameter updates during back-
propagation, which causes unstable learning, or “Tony Hawking” the
data, as we put it in Chapter 2. This problem is called the “exploding
gradient problem.” We will discuss this issue and practical solutions
to mitigate it in Chapter 10.

(iv) The distribution of parameter values should be centered around zero
because this is where the interesting things happen with most acti-
vation functions (see, for example, the tanh and ReLU activations
introduced earlier in this chapter).

One very common parameter initialization strategy that follows these
rules is the Glorot method (Glorot and Bengio, 2010).11 This method
11 This method is also commonly called Xavier initialization, based on the main

author’s first name.
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initializes a neuron’s edge weights uniformly from the range [− 1√
n
, 1√

n
],

where n is the number of input edges to this neuron. For example, if
layer l − 1 in a network has 100 neurons, then the initial edge weights
for neurons in layer l will be in the range [− 1

10 ,
1
10 ]. Without getting

into the math, making the range of the initial weight values depend on
the number of input edges makes the fluctuation (or variation) of the
neuron’s output activation similar to that of its inputs, which leads to
more stable learning.

For the same reasons, the last three rules of thumb also apply to
neuron activations throughout the entire training process, i.e., the ac-
tivation ali of neuron i in layer l (see Equation 5.1) should not be too
small or too large, and be centered around zero. To make sure that this
holds, one common strategy normalizes each neuron’s activation across
every individual mini-batch M (see Algorithm 10) such that the distri-
bution of values for each activation fits in a small range centered around
zero.12 For obvious reasons, this method is called batch normalization or
batch norm. In particular, for each mini-batch M, batch normalization
computes the mean µ and standard deviation σ (or, informally, how dis-
persed the set of values is) for all values observed for an activation ali in
the given mini-batch. Then, it re-centers ali around zero by subtracting
µ from it, and re-scales it to a standard deviation of 1 by dividing the
resulting difference by σ. What is important here is that the re-centering
and re-scaling operations are differentiable. In practice, batch normal-
ization is implemented as another network component that follows each
layer to be normalized in the network, and is trained using the same
gradient descent algorithm used for the rest of the network.

As we will see in the next few chapters, in some situations mini-batches
are not available, yet we still desire to normalize neuron activations. The
normalization strategy used in such situations is called layer normaliza-
tion (Ba et al., 2016). As its name implies, this method normalizes all
activations in the same network layer. That is, for each layer l, layer
normalization computes the mean and standard deviation for the set of
values corresponding to all activations ali in layer l, and then re-centers
and re-scales them using the same strategy as batch normalization. How-
ever, unlike batch normalization, which is applied only at training time
when mini-batches are available, layer normalization applies the same
procedure during both training and testing.

Both batch and layer normalization have been shown to lead to more
12 For the more mathematically inclined reader, batch normalization uses a mean of

0, and a variation of 1 for each activation.
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stable and faster training, and are generally recommended. Batch nor-
malization tends to perform better when larger mini-batches are avail-
able (due to the more robust statistics), whereas layer normalization is
recommended for small mini-batches, or when batching is not possible.

6.9 References and Further Readings
It is unclear who invented mini-batching. However, one of the first anal-
yses of its impact in training neural networks comes from Wilson and
Martinez (2003), who showed that small batches can act as regularizers
during training.

The idea of momentum was proposed by Polyak (1964), who found
that accumulating a velocity vector in “directions of persistent reduction
in the objective across iterations” accelerates gradient descent (Sutskever
et al., 2013). Nesterov (1983) generalized this idea by also “peaking
into the future” parameter values. Momentum and other observations
such as adaptive learning rates motivated a series of gradient descent
variants, e.g., AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
and Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015).

The rectified linear unit function was first used as an activation func-
tion by Jarrett et al. (2009), but it was widely adopted after Nair and
Hinton (2010) popularized it. Since then, multiple ReLU variants were
introduced, e.g., Maas et al. (2013) proposed leaky ReLU, and He et al.
(2015) introduced parametric ReLU, which includes a learnable param-
eter. Many other activation functions have been proposed in the deep
learning literature. A comprehensive survey of activation functions is
available in (Dubey et al., 2021).

Shannon (1948) introduced information entropy, which is the foun-
dation for the cross entropy loss function we discussed in this chapter.
One of the first references to using the cross entropy loss comes from
Cox (1958), who used it to train a logistic regression (or a single-neuron
neural network). However, most early multi-layer neural networks used
the simpler mean squared error loss. Today, the majority of neural net-
works are trained using the cross entropy loss, but it is unclear when
this transition took place.

Dropout is a relatively recent addition to the deep learning quiver. Sri-
vastava et al. (2014) proposed it as a technique for mitigating overfitting.
In contrast, L1 and L2 regularization are adopted from older, well-known
mathematical techniques. For example, Tikhonov (1943) proposed L2
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regularization (also known as Tikhonov regularization) as a method of
regularization of ill-posed problems.

Glorot and Bengio (2010) proposed the widely used parameter ini-
tialization we discussed in this chapter. Another similar initialization
strategy was introduced by Mikolov et al. (2013b). Batch normaliza-
tion was first proposed by Ioffe and Szegedy (2015), who showed that it
yields a better model for image classification. Layer normalization was
introduced by Ba et al. (2016).

6.10 Summary
In this chapter we discussed several practical solutions for problems that
affect neural networks such as stability of the training process, and over-
fitting. In particular, we introduced mini-batching, multiple optimization
algorithms, other activation and cost functions, regularization, dropout,
temporal averaging, and parameter initialization and normalization.



7
Implementing Text Classification with Feed

Forward Networks

In this chapter we provide an implementation of the multilayer neural
network described in Chapter 5, along with several of the best practices
discussed in Chapter 6.

Still keeping things fairly simple, our network will consist of two fully
connected layers: a hidden layer and an output layer. In between these
layers we will include dropout and a nonlinearity. Further, we make use
of two PyTorch classes: a Dataset and a DataLoader. The advantage of
using these classes is that they make several things easy, including data
shuffling and batching. Lastly, since the classifier’s architecture has be-
come more complex, for optimization we transition from stochastic gra-
dient descent to the Adam optimizer to take advantage of its additional
features such as momentum, and L2 regularization. As before, the code
from this chapter is available in a Jupyter notebook: chap7_ffnn.

7.1 Data
In this chapter we continue to use the AG News Dataset (Section 4.2.1),
including the same loading and preprocessing steps. Also, we continue
using the same train and test sets to be able to compare results to the
ones obtained in Section 4.2. However, in this chapter we will make use
of a development set to tune the model’s hyper parameters. For this
purpose, we split the training set in two: 80% of the examples become a
new training set, while the other 20% are the development set:

[8]: from sklearn.model_selection import train_test_split
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train_df, dev_df = train_test_split(train_df,␣
↪→train_size=0.8)
train_df.reset_index(inplace=True)
dev_df.reset_index(inplace=True)

print(f'train rows: {len(train_df.index):,}')
print(f'dev rows: {len(dev_df.index):,}')

train rows: 96,000
dev rows: 24,000

In the code above we used scikit-learn’s train_test_split function
to split the training set into a development partition and a new training
partition. Note that this function can split Python lists, NumPy arrays,
and even Pandas dataframes. The returned dataframes preserve the in-
dex of the original training dataframe, which can be useful to keep the
connection to the original data, but is not what we currently need, as
we are trying to create two independent datasets. Therefore, we reset
the index of the two new dataframes.

A second difference to what was done in Section 4.2 is the introduction
of mini-batches. PyTorch provides the DataLoader1 class which can be
used for shuffling the data and splitting it into mini-batches. In order to
create a DataLoader, we need the data to be in the form of a PyTorch
Dataset.2 There are two main types of PyTorch datasets: map-style
and iterable-style. We will use the former, as it is simpler and meets
our needs, but it is good to know that the other option is available for
situations when, for example, you need to stream data from a remote
source or random access is expensive.

To create a map-style dataset we need to subclass torch.utils.data.Dataset
and override its __getitem__() method (to return an example given a
key), as well as its __len__() method (to return the number of exam-
ples in the dataset). Our dataset implementation stores two sequences:
one for holding the features, and another for storing the corresponding
labels. In our implementation we store two Pandas Series, but Python
lists or NumPy arrays would also work. The implementation __len__()
is trivial: we simply return the length of the feature sequence, that is,
the number of feature vectors. The implementation of __getitem__()
is slightly more involved. Recall that each of our feature vectors is rep-
1 https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
2 https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
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resented as a dictionary with word ids as keys, and word counts as
values, and any word id not in the dictionary has a count of zero. Our
__getitem__() method transforms this representation into one that Py-
Torch can use. We first create two PyTorch tensors, one for the label and
one for the features, which is initially populated with zeros. Then, we
retrieve the feature dictionary corresponding to the provided index, and,
for each key-value pair in the feature dictionary, we update the corre-
sponding element of the tensor. Once this is complete, we return the
feature and label tensors for the datum:

[11]: from torch.utils.data import Dataset

class MyDataset(Dataset):
def __init__(self, x, y):

self.x = x
self.y = y

def __len__(self):
return len(self.x)

def __getitem__(self, index):
x = torch.zeros(vocabulary_size, dtype=torch.

↪→float32)
y = torch.tensor(self.y[index])
for k,v in self.x[index].items():

x[k] = v
return x, y

7.2 Fully-Connected Neural Network
Having completed the Dataset implementation, we next implement the
model, i.e., a fully-connected neural network with two layers. In Sec-
tion 4.2 we used a Linear module directly. This time, we will demon-
strate how to implement a model as a new module, by subclassing
torch.nn.Module. Although this is not necessary for this model, as
it can be represented by a Sequential module, as models get more
complex, it becomes helpful to encapsulate their behavior. To imple-
ment a Module, we need to implement the constructor and override the
forward() method.
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Note that, in our constructor below, before initializing the object
fields, we invoke the constructor of the parent class (i.e., Module) with
the line super().__init__(). This allows PyTorch to set up the mech-
anisms through which any layers defined as attributes in the construc-
tor are properly registered as model parameters. In our example, a
Sequential instance is assigned to self.layers; this is enough for our
model instance to know about it during back-propagation and parameter
updating.

Here, our model consists of two linear layers, each one preceded by a
dropout layer (which drops out input neurons from the corresponding
linear layer). The input of the first linear layer has the same size as our
vocabulary, and its output has the dimension of the hidden layer (please
see Section 5.1 for a refresher on the architecture of the feed-forward
neural network). Consequently, the input size of the second linear layer
is equal to the size of the hidden layer, and its output size is the number
of classes. Additionally, between the two linear layers we add a ReLU
nonlinearity. All of the model layers are wrapped in a Sequential mod-
ule, which simply connects the output of one layer to the input of the
next.

The second method we need to implement is the forward() method,
which defines how the model applies its layers to a given input during
the forward pass. Our forward() method simply calls the sequential
layer and returns its output. Note that while this method implements
the model’s forward pass, in general, this method should not be called
directly by the user. Instead, the user should use the model as though
it were a function (technically, invoking the __call__() method), and
let PyTorch call the forward() method internally. This allows PyTorch
to activate necessary features such as module hooks correctly.

[12]: from torch import nn

class Model(nn.Module):
def __init__(self, input_dim, hidden_dim,␣

↪→output_dim, dropout):
super().__init__()
self.layers = nn.Sequential(

nn.Dropout(dropout),
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
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nn.Dropout(dropout),
nn.Linear(hidden_dim, output_dim),

)

def forward(self, x):
return self.layers(x)

7.3 Training
In order to train our model, we will first initialize the hyperparameters
and the different components we need: model, loss function, optimizer,
dataset, and data-loader. Notable differences with respect to Section 4.2
are the use of the Adam optimizer with a weight decay (this is just what
PyTorch calls L2 regularization – see Chapter 6), and the use of a data-
loader with shuffling and batches of 500 examples. We encourage you to
take the time to examine the values we use for the hyper parameters,
and to experiment with modifying them in the Jupyter notebook.

[24]: from torch import optim
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score

# hyperparameters
lr = 1e-3
weight_decay = 1e-5
batch_size = 500
shuffle = True
n_epochs = 5
input_dim = vocabulary_size
hidden_dim = 50
output_dim = len(labels)
dropout = 0.3

# initialize the model, loss function, optimizer, and␣
↪→data-loader
model = Model(input_dim, hidden_dim, output_dim,␣

↪→dropout).to(device)
loss_func = nn.CrossEntropyLoss()



7.3 Training 123

optimizer = optim.Adam(
model.parameters(),
lr=lr,
weight_decay=weight_decay)

train_ds = MyDataset(
train_df['features'],
train_df['class index'] - 1)

train_dl = DataLoader(
train_ds,
batch_size=batch_size,
shuffle=shuffle)

dev_ds = MyDataset(
dev_df['features'],
dev_df['class index'] - 1)

dev_dl = DataLoader(
dev_ds,
batch_size=batch_size,
shuffle=shuffle)

# lists used to store plotting data
train_loss, train_acc = [], []
dev_loss, dev_acc = [], []

The basic steps of the learning loop are the same as those in Sec-
tion 4.2, except that we are now using a development set to keep track
of the performance of the current model after each training epoch.

One important difference between using our model during training
and evaluation is that, prior to each training session, we need to set the
model to training mode using the train() method, and before evalu-
ating on the development set, we need to set the model to evaluation
mode using the eval() method. This is important, because some layers
have different behavior depending on whether the model is in training
or evaluation mode. In our model, this is the case for the Dropout layer,
which randomly zeroes some of its input elements during training and
scales its outputs accordingly (see Section 6.6), but during evaluation
does nothing.

In order to plot some relevant statistics acquired from the training
data, we collect the current loss and accuracy for each mini-batch. Note
that we call detach() on the tensors corresponding to the loss and the
predicted/gold labels so they are no longer considered when computing
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gradients. Calling cpu() copies the tensors from the GPU to the CPU
if we are using the GPU; otherwise it does nothing. Calling numpy()
converts the PyTorch tensor into a NumPy array. Unlike the prediction
sequence, which is represented as a vector of label scores, the loss is
a scalar. For this reason, we retrieve it as a Python number using the
item() method.

When evaluating on the development set, since we do not need to
compute the gradients, we save computation by wrapping the steps in
a torch.no_grad() context-manager. Since we are not learning, we do
not perform back-propagation or invoke the optimizer.

[25]: # train the model
for epoch in range(n_epochs):

losses, acc = [], []
# set model to training mode
model.train()
for X, y_true in tqdm(train_dl, desc=f'epoch␣

↪→{epoch+1} (train)'):
# clear gradients
model.zero_grad()
# send batch to right device
X = X.to(device)
y_true = y_true.to(device)
# predict label scores
y_pred = model(X)
# compute loss
loss = loss_func(y_pred, y_true)
# compute accuracy
gold = y_true.detach().cpu().numpy()
pred = np.argmax(y_pred.detach().cpu().numpy(),␣

↪→axis=1)
# accumulate for plotting
losses.append(loss.detach().cpu().item())
acc.append(accuracy_score(gold, pred))
# backpropagate
loss.backward()
# optimize model parameters
optimizer.step()

# save epoch stats
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train_loss.append(np.mean(losses))
train_acc.append(np.mean(acc))

# set model to evaluation mode
model.eval()
# disable gradient calculation
with torch.no_grad():

losses, acc = [], []
for X, y_true in tqdm(dev_dl, desc=f'epoch␣

↪→{epoch+1} (dev)'):
# send batch to right device
X = X.to(device)
y_true = y_true.to(device)
# predict label scores
y_pred = model(X)
# compute loss
loss = loss_func(y_pred, y_true)
# compute accuracy
gold = y_true.cpu().numpy()
pred = np.argmax(y_pred.cpu().numpy(),␣

↪→axis=1)
# accumulate for plotting
losses.append(loss.cpu().item())
acc.append(accuracy_score(gold, pred))

# save epoch stats
dev_loss.append(np.mean(losses))
dev_acc.append(np.mean(acc))

After completing training we have gathered the loss and accuracy val-
ues after each epoch for both the training and development partitions.
Next, we plot these values in order to visualize the classifier’s progress
over time. Plots such as these are important to determine how well our
model is learning, which informs decisions regarding adjusting hyper pa-
rameters or modifying the model’s architecture. Below we only show the
plot for the loss. Plotting the accuracy is very similar; the corresponding
code as well as the plot itself is available in the Jupyter notebook.

[15]: import matplotlib.pyplot as plt
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x = np.arange(n_epochs) + 1

plt.plot(x, train_loss)
plt.plot(x, dev_loss)
plt.legend(['train', 'dev'])
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid(True)
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The plot indicates that both the training and development losses de-
crease over time. This is good! It indicates that our classifier is neither
overfitting nor underfitting. Recall from Chapter 2 that overfitting hap-
pens when a classifier performs well in training, but poorly on unseen
data. In the plot above this would be indicated by a training loss that
continues to decrease, but is associated with a development loss that does
not. Underfitting happens when a classifier is unable to learn meaningful
associations between the input features and the output labels. In this
plot this would be shown as loss curves that do not decrease over time.

This analysis means we are ready to evaluate our trained model on
the test set, which must be a truly unseen dataset that was not used for
training or to tune hyper parameters. In other words, this experiment
will indicate how well our model performs “in the wild.” Because we
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would like these results to be as close as possible to real-world results,
the test set should be used sparingly, only after the entire architecture,
its trained parameters, and its hyper parameters have been frozen.

[18]: from sklearn.metrics import classification_report

# set model to evaluation mode
model.eval()

dataset = MyDataset(test_df['features'], test_df['class␣
↪→index'] - 1)
data_loader = DataLoader(dataset, batch_size=batch_size)
y_pred = []

# disable gradient calculation
with torch.no_grad():

for X, _ in tqdm(data_loader):
X = X.to(device)
# predict one class per example
y = torch.argmax(model(X), dim=1)
# convert tensor to numpy array
y_pred.append(y.cpu().numpy())

# print results
y_pred = np.concatenate(y_pred)
print(classification_report(dataset.y, y_pred,␣

↪→target_names=labels))

precision recall f1-score support

World 0.94 0.90 0.92 1900
Sports 0.96 0.99 0.97 1900

Business 0.89 0.88 0.89 1900
Sci/Tech 0.89 0.90 0.89 1900

accuracy 0.92 7600
macro avg 0.92 0.92 0.92 7600

weighted avg 0.92 0.92 0.92 7600

With our feed-forward neural architecture we have achieved an accu-
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racy of 92%, which is a substantial improvement over the 88% accuracy
we obtained in Section 4.2. We strongly suggest that you experiment not
only with the different hyper parameters, but also with different model
architectures in the Jupyter notebook. Such exercises will help you de-
velop an intuition about the different effects each design choice has, as
well as how these decisions interact with each other.

7.4 Summary
In this chapter we have shown how to implement a feed-forward neural
network in PyTorch. We have also introduced several PyTorch features
that encourage and simplify deep learning best practices. In particu-
lar, the built-in Dataset and DataLoader classes make mini-batching
straightforward while still allowing for customization such as sampling.
The ability to create a custom Dataset object allows us to handle com-
plex data and still have access to the features of a DataLoader. By
convention, all the components provided by PyTorch are batch-aware
and assume that the first dimension refers to the batch size, simplifying
model implementation and improving readability.

In building the model itself, we also saw that PyTorch uses layer mod-
ularization, i.e., both the network layers themselves and operations on
them (such as dropout and activation functions) are modeled as layers in
a pipeline. This makes it easy to interweave network layers, add various
operations between them, and swap activation functions as desired. The
weight initialization is also handled automatically when the layers are
created, but can be customized as needed.

Further, one can tailor the training process in PyTorch by adding mo-
mentum, adaptive learning rates, and regularization through optimizer
selection and configuration. In this chapter, we used the Adam opti-
mizer, which, in the authors’ experience, is a good default choice, but
there are many other optimizers to choose from. We recommend that the
reader read the PyTorch documentation on optimizers for more details:
https://pytorch.org/docs/stable/optim.html.

https://pytorch.org/docs/stable/optim.html
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Distributional Hypothesis and Representation

Learning

As mentioned in the previous chapters, all the algorithms we covered
so far rely on hand-crafted features that must be designed and imple-
mented by the machine learning developer. This is problematic for two
reasons. First, designing such features can be a complicated endeavor.
For example, even for the apparently simple task of designing features
for text classification questions arise quickly: How should we handle syn-
tax? How do we model negation? Second, most words in any language
tend to be very infrequent. This was formalized by Zipf (1932), who ob-
served that if one ranks the words in a language in descending order of
their frequency then the frequency of the word at rank i is 1

i times the
frequency of the most frequent word. For example, the most frequent
word in English is the. The frequency of the second most frequent word
according to Zip’s law is half the frequency of the; the frequency of the
third most-frequent word is one third of the frequency of the, and so on.1
In our context, this means that most words are very sparse, and our text
classification algorithm trained on word-occurrence features may gener-
alize poorly. For example, if the training data for a review classification
dataset contains the word great but not the word fantastic, a learning
algorithm trained on this data will not be able to properly handle re-
views containing the latter word, even though there is a clear semantic
similarity between the two. In the wider field of machine learning, this
problem is called the “curse of dimensionality” (Bellman, 1957).

In this chapter we will begin to addresses this limitation. In partic-
ular, we will discuss methods that learn numerical representations of
words that capture some semantic knowledge. Under these representa-

1 Interestingly, this law was observed to hold even for non-human languages such
as dolphin whistles (Ferrer-i Cancho and McCowan, 2009).
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tions, similar words such as great and fantastic will have similar forms,
which will improve the generalization capability of our ML algorithms.

8.1 Traditional Distributional Representations
The methods in this section are driven by the distributional hypothesis
of Harris (1954), who observed that words that occur in similar contexts
tend to have similar meanings. The same idea was popularized a few
years later by Firth (1957) who, perhaps more elegantly, stated that “a
word is characterized by the company it keeps.” It is easy to intuitively
demonstrate the distributional hypothesis. For example, when presented
with the phrases bread and … and bagels with …, many people will im-
mediately guess from the provided context that the missing words are
butter and cream cheese, respectively.

In this section, we will formalize this observation. In particular, we will
associate each word in a given vocabulary with a vector, which represents
the context in which the word occurs. According to the distributional
hypothesis these vectors should capture the semantic meaning of words,
and, thus, words that are similar should have similar vectors.

Traditionally, these vectors were built simply as co-occurrence vec-
tors. That is, for each word w in the vocabulary, its vector counts the
co-occurrence with other words in its surrounding context, where this
context is defined as a window of size [−c, +c] words around all instances
of w in text. Here, we use negative values to indicate number of words
to the left of w, and positive values to indicate number of words to the
right. For example, consider the text below:
A bagel and cream cheese (also known as bagel with cream cheese) is a common
food pairing in American cuisine. The bagel is typically sliced into two pieces,
and can be served as-is or toasted.2

In this text, bagel occurs three times. Thus, we will have three context
windows, one for each mention of the word. While common values for c

range from 10 to 20, let us set c = 3 for this simple example. Under this
configuration, the three context windows for bagel in this text are:

• A bagel and cream cheese
• also known as bagel with cream cheese
• American cuisine The bagel is typically sliced
2 Text adapted from the Bagel and cream cheese Wikipedia page:

https://en.wikipedia.org/wiki/Bagel_and_cream_cheese.

https://en.wikipedia.org/wiki/Bagel_and_cream_cheese
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Note that we skipped over punctuation signs when creating these win-
dows.3 If we aggregate the counts of words that appear in these context
windows, we obtain the following co-occurrence vector for bagel:

A 1

also 1

American 1

and 1

as 1

cheese 2

cream 2

cuisine 1

is 1

known 1

sliced 1

The 1

typically 1

with 1

This example shows that the co-occurrence vector indeed captures mean-
ingful contextual information: bagel is most strongly associated with
cream and cheese, but also with other relevant context words such as cui-
sine and sliced. The larger the text used to compute these co-occurrence
vectors is, the more meaningful these vectors become.

In practice, these co-occurrence vectors are generated from large doc-
ument collections such as Wikipedia,4 and are constructed to have size
M , where M is the size of entire word vocabulary, i.e., the totality of
the words observed in the underlying document collection. Note that
these vectors will be sparse, i.e., they will contain many zero values,
3 Different ways of creating these context windows are possible. For example, one

may skip over words deemed to contain minimal semantic meaning such as
determiners, pronouns, and prepositions. Further, these windows may be
restricted to content within the same sentence. Lastly, words may be normalized
in some form, e.g., through lemmatization. We did not use any of these heuristics
in our example for simplicity.

4 https://www.wikipedia.org

https://www.wikipedia.org
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for all the words in the vocabulary that do not appear in the context
of the given word. Having all co-occurrence vectors be of similar size
allows us to formalize the output of this whole process into a single co-
occurrence matrix C of dimension M ×M , where row i corresponds to
the co-occurrence vector for word i in the vocabulary. A further im-
portant advantage of standardizing vector sizes is that we can easily
perform vector operations (e.g., addition, dot product) between differ-
ent co-occurrence vectors, which will become important soon.

Once we have this co-occurrence matrix, we can use it to improve our
text classification algorithm. That is, instead of relying on an explicit
feature matrix (see, for example, the feature matrix in Table 2.4), we
can build our classifier on top of the co-occurrence vectors. A robust
and effective strategy to this end is to simply average the co-occurrence
vectors for the words contained in a given training example (Iyyer et al.,
2015). Take, for example, the first training example in Table 2.4: instead
of training on the sparse feature vector listed in the first row in the table,
we would train on a new vector that is the average of the context vec-
tors for the three words present in the training example: good, excellent,
and bad. This vector should be considerably less sparse than the origi-
nal feature vector, which contains only three non-zero entries. The first
obvious consequence of this decision is that the dimensions of the clas-
sifier’s parameters change. For example, in the case of a Perceptron or a
logistic regression, the dimension of the vector w becomes M to match
the dimension of the co-occurrence vectors. The second, more important
consequence, is that the parameter vector w becomes less sparse be-
cause it is updated with training examples that are less sparse in turn.
This means that our new classifier should generalize better to other,
previously unseen words. For example, we expect other words that carry
positive sentiment to occur in similar contexts with good and excellent,
which means that the dot product of their co-occurrence vectors with
the parameter w is less likely to be zero.

8.2 Matrix Decompositions and Low-rank
Approximations

But have we really solved the “curse of dimensionality” by using these
co-occurrence vectors instead of the original lexical features? One may
reasonably argue that we have essentially “passed the buck” from the ex-
plicit lexical features, which are indeed sparse, to the co-occurrence vec-
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tors, which are probably less sparse, but most likely have not eliminated
the sparsity curse. This is intuitively true: consider the co-occurrence
vector for the word bagel from our previous example. Regardless of how
large the underlying document collection used to compute these vectors
is and how incredible bagels are, it is very likely that the context vector
for bagel will capture information about breakfast foods, possibly foods
in general and other meal-related activities, but will not contain infor-
mation about the myriad other topics that occur in these documents in
bagel-free contexts.

To further mitigate the curse of dimensionality, we will have to rely on
a little bit of linear algebra. Without going into mathematical details, it
is possible to decompose the co-occurrence matrix C into a product of
three matrices:

C = UΣVT (8.1)

where U has dimension M × r, Σ is a squared matrix of dimension
r × r, and VT has dimension r × M .5 Each of these three matrices
has important properties. First, Σ is a diagonal matrix. That is, all its
elements are zero with the exception of the elements on the diagonal:
σij = 0 for i ̸= j.6 The non-zero diagonal values, σii, are referred to as
the singular values of C, and, for this reason, this decomposition of C is
called singular value decomposition or SVD.7 The dimension of Σ, r, is
called the rank of the matrix C.8 Importantly, as we will see in a minute,
the values σii are listed in descending order in Σ. That is, σii > σjj for
i < j. Further, the rows in U are orthogonal, i.e., the dot product of any
two rows in U is zero. Similarly, the rows in V (or columns in VT ) are
also orthogonal.

So, where does all this math leave us? It turns out that the output of

5 The superscript T indicates the transpose operation. It is used here to indicate
that VT is computed as the transpose of another matrix V, which has certain
mathematical properties. This is less important for our discussion. But we keep
the same notation as the original algorithm, for consistency.

6 For those of us not familiar with the Greek alphabet, σ and Σ are
lowercase/uppercase forms of the Greek letter sigma. We use the former to
indicate elements in the latter matrix.

7 The general form of singular value decomposition does not require the matrix C
to be square. For this reason, the SVD form we discuss here, which relies on a
square matrix C, is referred to as truncated singular value decomposition. In this
book, we will omit the truncated modifier, for simplicity.

8 In general, the rank of a matrix C is equal to the number of rows in C that are
linearly independent of each other, i.e., they cannot be computed as a linear
combination of other rows. This is not critical to our discussion.
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Figure 8.1 Summary of the four matrices in the singular value decom-
position equation: C = UΣVT . The empty rectangles with dashed lines
indicate which elements are zeroed out under the low-rank approxima-
tion.

the singular value decomposition process has important linguistic inter-
pretations (see Figure 8.1 for a summary):

(i) Each row in the matrix U contains the numerical representation of a
single word in the vocabulary, and each column in U is one semantic
dimension, or topic, used to describe the underlying documents that
were used to construct C. For example, if row i contains the co-
occurrence vector for the word bagel and column j contains a topic
describing foods, we would expect cij to have a high value because
the food topic is an important part of the semantic description of
the word bagel. Importantly however, the SVD algorithm does not
guarantee that the semantic dimensions encoded as columns in U
are actually interpretable to human eyes. Assigning meaning to these
dimensions is a post-hoc, manual process that requires the inspection
of the VT matrix (see third item).

(ii) The singular values in Σ indicate the importance of topics captured
in U. That is, if σii > σjj then topic i (i.e., the column i in U) is
more important than column j. And, since the values in Σ are listed
in descending order, we can state that topic i is more important than
topic j, if i < j. This will become important in a minute.

(iii) Each row i in VT contains a bag-of-words description of topic i, where
the value at position j in row i indicates the importance of word j

to topic i. For example, if the three highest values in a given row
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point to the words bagel, bread, and croissant, one can (subjectively)
interpret this topic to be about bakery products. As mentioned before,
such interpretations are not always easy to make. Because the SVD
algorithm is completely agnostic to linguistic interpretations, it is
possible that some of the produced topics will resist an immediate
interpretation. This is an unfortunate drawback we will have to live
with, for the sake of mitigating the curse of dimensionality.

While the SVD process produces a new vector representation for each
word in the vocabulary, i.e., row i in the matrix U corresponds to the
new representation of word i, we are not quite done. The rank of the
matrix C, r, which also indicates the number of columns in U, is guar-
anteed to be smaller than M , but it is not necessarily much smaller. We
would like to produce vector representations of dimension k, where k is
much smaller than M , k ≪ M . To generate these representations, we
will take advantage of the fact that, as discussed, the diagonal matrix
Σ contains the topic importance values listed from largest to smallest.
Thus, intuitively, if one were to remove the last r − k topics we would
not lose that much information because the top k topics that are most
important to describe the content of C are still present. Formally, this
can be done by zeroing out the last r − k elements of Σ, which has the
effect of ignoring the last r − k columns in U and the last r − k rows in
VT in the SVD multiplication. Figure 8.1 visualizes this process using
empty squares and rectangles for the elements in Σ and rows/columns
in U/VT that are zeroed out. The resulting matrix C that is generated
when only the first k topics are used is called a low-rank approximation
of the original matrix C. To distinguish between the two matrices, we
will use the notation Ck to denote the low-rank approximation matrix.
There is theory that demonstrates that Ck is the best approximation
of C for rank k. What this means for us is that we can use the first
k columns in U to generate numerical representations for the words in
the vocabulary that approximate as well as possible the co-occurrence
counts encoded in C. In empirical experiments, k is typically set to val-
ues in the low hundreds, e.g., 200. This means that, once this process is
complete, we have associated each word in the vocabulary with a vector
of dimension k = 200 that is its numerical representation according to
the distributional hypothesis.
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8.3 Drawbacks of Representation Learning Using
Low-Rank Approximation

Although this approach has been demonstrated empirically to be useful
for several NLP applications including text classification and search, it
has two major problems. The first is that this method, in particular
the SVD component, is expensive. Without going into mathematical
details, we will mention that the cost of the SVD algorithm is cubic in
the dimension of C. Since in our case the dimension of C is the size of
the vocabulary, M , our runtime cost is proportional to M3. In many
NLP tasks the vocabulary size is in the hundreds of thousands of words
(or more!), so this is clearly a very expensive process.

The second drawback is that this approach conflates all word senses
into a single numerical representation. For example, the word bank may
mean a financial institution, or sloping land, e.g., as in bank of the river.
But because the algorithm that generates the co-occurrence counts is not
aware of the various senses of a given word, all these different semantics
are conflated into a single vector. We will address the first drawback in
the remaining part of this chapter, and the second in Chapter 12.

8.4 The Word2vec Algorithm
The runtime cost of learning word numerical representations has been
addressed by Mikolov et al. (2013a), who proposed the word2vec algo-
rithm.9 Similar to our previous discussion, the goal of this algorithm is to
learn numerical representations that capture that distributional hypoth-
esis. More formally, word2vec introduces a training objective that learns
“word vector representations that are good at predicting the nearby
words.” In other words, this algorithm flips the distributional hypothesis
on its head. While the original hypothesis stated that “a word is char-
acterized by the company it keeps,” i.e, a word is defined by its context,
word2vec’s training objective predicts the context in which a given word
is likely to occur, i.e., the context is defined by the word. Mikolov et al.
(2013a) proposed two variants of word2vec. For simplicity, we will de-
scribe here the variant called “skip-gram,” which implements the above
training objective. From here on, we will refer to the skip-gram variant
of word2vec simply as word2vec.

Figure 8.2 illustrates the intuition behind word2vec’s training process.
9 The name of this algorithm is an abbreviation of “word to vector.”
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Figure 8.2 An illustration of the word2vec algorithm, the skip-gram vari-
ant, for the word bagel in the text: A bagel and cream cheese (also known
as bagel with cream cheese) is a common food pairing in American cui-
sine. Blue indicates “input” vectors; red denotes “output” vectors. The
algorithm clusters together output vectors for the words in the given con-
text window (e.g., cream and cheese) with the corresponding input vector
(bagel), and pushes away output vectors for words that do not appear in
its proximity (e.g., computer and cat).

Visually, the algorithm matches the distribution hypothesis exactly: it
makes sure that the vector representation of a given word (e.g., bagel in
the example shown in the figure) is close to those of words that appear
near the given word (e.g., cream and cheese), and far from the vector
representations of words that do not appear in its neighborhood (e.g.,
computer and cat). Importantly, to distinguish between input words and
context words, the algorithm actually learns two vectors for each word
in the vocabulary: one for when it serves as an input word (e.g., bagel in
the example), and one for when it serves as a context our output word
(e.g., cheese).

More formally, the algorithm implements the distributional hypothe-
sis as a prediction task. First, for each input word wi in the vocabulary,10
the algorithm identifies the context windows of size [−c,+c] around all
instances of wi in some large text. This process is identical to the way
we constructed the context windows at the beginning of this chapter.
For example, the first context window for the word bagel and c = 3 is: A
bagel and cream cheese. Second, all the context (or output) words that
appear in these windows are added to the pool of words that should
10 In practice, the algorithm uses only the most frequent k words in the vocabulary

to reduce training run times.
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be predicted given wi. Then, the training process maximizes the pre-
diction probability for each word wj in the context of wi. That is, the
theoretical11 cost function C for word2vec is:

C = −
M∑
i=1

∑
wj in the context of wi

log(p(wj |wi)) (8.2)

where the probability p(wj |wi) is computed using the input vector for
wi, the output vector for wj and the softmax function introduced in
Section 3.5:

p(wj |wi) =
e

vo
wj

·vi
wi∑M

k=1 e
vo
wk

·vi
wi

(8.3)

where vi indicates an input vector (i.e., the blue vectors in Figure 8.2),
vo indicates a context (or output) vector (red vectors in the figure), and
the denominator in the fraction iterates over all the words in the vocabu-
lary of size M in order to normalize the resulting probability. All vi and
vo vectors are updated using the standard stochastic gradient descent
algorithm during training, similar to the procedure described in Chap-
ter 3. That is, each weight u from a vi and vo vector is updated based
on its partial derivative, d

duCi, where Ci is the loss function for input
word i in the vocabulary: Ci = −

∑
wj in the context of wi

log(p(wj |wi)).
It is important to note at this stage that the last two equations provide

a formalization of the intuition shown in Figure 8.2. That is, minimiz-
ing the cost function C has the effect of maximizing the probabilities
p(wj |wi) due to the negative sign in Equation 8.2. Further, maximizing
these probabilities has the consequence of bringing the output vectors
of context words (vo

wj
) and the input vector for word wi (vi

wi
) closer

together because that maximizes the dot product in the numerator in
Equation 8.3. Similarly, maximizing these probabilities has the effect
of minimizing the denominator of the fraction in Equation 8.3, which,
in turn, means that the dot products with vectors of words not in the
context of wi will be minimized.

A second important observation is that there is a very close parallel
between this algorithm and the multi-class logistic regression algorithm
introduced in Section 3.5. Similar to the multi-class LR algorithm, here
we use data points described through a vector representation (vi here vs.
11 We call this cost function “theoretical” because, as we will see in a minute, this is

not what is actually implemented.
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x in the standard LR algorithm) to predict output labels (context words
vs. labels in y for LR). Both algorithms have the same cost function:
the negative log likelihood of the training data. However, there are three
critical differences between word2vec and multi-class LR:

Difference #1: while the formulas for the dot products in the two al-
gorithms look similar, in LR the x is static, i.e., it doesn’t change during
training, whereas in word2vec both vi and vo vectors are dynamically ad-
justed through stochastic gradient descent. This is because the x vector
in LR stores explicit features that describe the given training example
(and thus does not change), whereas in word2vec both vi and vo vectors
are continuously moved around in their multi-dimensional space during
training to match the distributional hypothesis in the training dataset.
For this reason, the word2vec algorithm is also referred to as “dynamic
logistic regression.”

Difference #2: the x vector in LR stores explicit features whereas the
weights u in the vi and vo vectors in word2vec are simply coordinates in
a multi-dimensional space. For this reason, the output of the word2vec
training process is considerably less interpretable than that of LR. For
example, in multi-class LR, one can inspect the largest weights in the
learned vector wc for class c to identify the most important features for
the classification of class c. This is not possible for word2vec. Further,
word2vec is arguably even less interpretable than the singular value de-
composition matrix U in Section 8.2. There we could use the VT matrix
to come up with a (subjective) interpretation of each column in U. Again,
this is not possible in word2vec, where no such descriptions exist.

Difference #3: Lastly, the number of classes in a multi-class LR prob-
lem is usually much smaller than the number of context words in word2vec,
which is equal to the size of the vocabulary, M . Typically the former is
tens or hundreds, whereas M may be in the millions or billions. Because
of this, the denominator of the conditional probability in Equation 8.3
is prohibitively expensive to calculate. Due to this, the actual word2vec
algorithm does not implement the cost function in Equation 8.2 but an
approximated form of it:

C = −
∑M

i=1(
∑

wj in the context of wi
log(σ(vo

wj
· vi

wi
))

+
∑

wj not in the context of wi
log(σ(−vo

wj
· vi

wi
))) (8.4)
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or, for a single input word wi:

Ci = −(
∑

wj∈Pi

log(σ(vo
wj

· vi
wi
)) +

∑
wj∈Ni

log(σ(−vo
wj

· vi
wi
))) (8.5)

where σ is the standard sigmoid function, σ(x) = 1
1+e−x , Pi is the set of

context words for the input word wi, and Ni is the set of words not in
the context of wi.

This new cost function captures the same distributional hypothesis:
the first sigmoid maximizes the proximity of input vectors with the out-
put vectors of words in context, whereas the second sigmoid minimizes
the proximity of input vectors to output vectors of words not in context,
due to the negative sign in the sigmoid parameter: −vo

wj
· vi

wi
. However,

this cost function is much easier to compute than the first cost function
in Equation 8.2 for two reasons. First, we are no longer using conditional
probabilities, which are expensive to normalize. Second, the right-most
term of the cost function in Equation 8.5 does not operate over all the
words in the vocabulary, but over a small sample of words that do not
appear in the context of wi. These words can be selected using vari-
ous heuristics. For example, one can uniformly choose words from the
training dataset such that they do not appear in the context of a given
input word wi. However, this has the drawback that it will oversample
very frequent words (which are more common and, thus, more likely to
be selected). To control for this, the word2vec algorithm selects a non-
context word w proportional to the probability p(w) = freq(w)3/4

Z , where
freq(w) indicates the frequency of word w in the training corpus, and Z

is the total number of words in this corpus. The only difference between
the probability p(w) and the uniform probability is the 3/4 exponent.
This exponent dampens the importance of the frequency term, which
has the effect that very frequent words are less likely to be oversampled.

Algorithm 11 lists the pseudocode for the complete training procedure
for word2vec that incorporates the discussion above. This algorithm is
another direct application of stochastic gradient descent, which is used
to update both the input vectors (lines 10 – 12) and output vectors (lines
13 – 17) until convergence (or for a fixed number of epochs). In all up-
date equations, α indicates the learning rate. At the end, the algorithm
returns the average of the input and output vectors as the numeric repre-
sentation of each word in the vocabulary (lines 20 – 22). Note that other
ways of computing the final word numeric representations are possible,
but the simple average has been observed to perform well in practice for
downstream tasks (Levy et al., 2015).
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Algorithm 11: word2vec training algorithm.
1 for each word wi in the vocabulary do
2 initialize vi

wi
and vo

wi
randomly

3 end
4 while not converged do
5 for each word position i in the training dataset do
6 wi = word at position i

7 Pi = set of words in the window [i− c, i+ c] around wi

8 Ni = sampled from the set of words not in Pi

9 compute cost function Ci using Pi, Ni and Equation 8.5
10 for each dimension u in vi

wi
do

11 u = u− α d
duCi

12 end
13 for each word wj ∈ Pi ∪Ni do
14 for each dimension u in vo

wj
do

15 u = u− α d
duCi

16 end
17 end
18 end
19 end
20 for each word wi in the vocabulary do
21 return (vi

wi
+ vo

wi
)/2

22 end

In addition to the more efficient cost function, this algorithm has a
second practical simplification over our initial discussion. The algorithm
does not identify all context windows for each word in the vocabulary
ahead of time, as we discussed when we introduced the cost function in
Equation 8.2. This would require complex bookkeeping and, potentially,
a considerable amount of memory. Instead, Algorithm 11 linearly scans
the text (line 5), and constructs a local context Pi and a negative context
Ni from the current context window at this position in the text (lines 7
and 8). This has several advantages. First, since only one pair of local
Pi and Ni sets are kept in memory at a time, the memory requirements
for this algorithm are much smaller. Second, the runtime cost of this
algorithm is linear in the size of the training dataset because (a) all op-
erations in the inner for loop depend on the size of the context window,
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Figure 8.3 Two-dimensional projection of 1000-dimensional vectors
learned by word2vec for countries and their capitals (Mikolov et al.,
2013a).

which is constant (lines 6 – 17), and (b) the number of epochs used in
the external while loop (line 4) is a small constant. This is a tremendous
improvement over the runtime of the SVD procedure, which is cubic in
the size of the vocabulary. One potential drawback of this strategy is
that the local Ni used in the algorithm may not be accurate. That is,
the words sampled to be added to Ni in line 8 may actually appear in
another context window for the another instance of the current word in
the training dataset. However, in practice, this does not seem to be a
major problem.

The vectors learned by word2vec have been shown to capture seman-
tic information that has a similar impact on downstream applications as
the vectors learned through the more expensive low-rank approximation
strategy discussed earlier in this chapter (Levy et al., 2015). We will dis-
cuss some of these applications in the following chapters. This semantic
information can also be directly analyzed. For example, Mikolov et al.
(2013a) showed that a visualization of 1000-dimensional vectors learned
by word2vec surfaces interesting patterns. For example, the relation be-
tween countries and their capital cities (shown as the difference between
the two respective vectors) tends to be same regardless of country and
capital (Figure 8.3). That is, ⃗China − ⃗Beijing ≈ ⃗Portugal − ⃗Lisbon,
where the superscript arrow indicates the vector learned by word2vec
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for the corresponding word. Many other similar patterns have been ob-
served. For example, the difference between the vectors of king and man
is similar to the difference between the vectors of queen and woman:
⃗king − m⃗an ≈ ⃗queen − ⃗woman, which suggests that this difference

captures the semantic representation of a genderless monarch. In the
following chapters, we will see how we use these vectors to replace the
manually-designed features in our NLP applications.

8.5 Drawbacks of the Word2vec Algorithm
Word2vec has the same drawbacks as the low-rank approximation algo-
rithm previously discussed. Both approaches produce vectors that suffer
from lack of interpretability, although one could argue that word2vec’s
vectors are even less interpretable than the low-rank vectors in the U
matrix, whose dimensions can be somewhat explained using the VT ma-
trix.

Further, similar to the SVD-based strategy, word2vec conflates all
senses of a given word into a single numerical representation. That is, the
word bank gets a single numerical representation regardless of whether
its current context indicates a financial sense, e.g., Bank of America, or
a geological one, e.g., bank of the river. In Chapter 12 we will discuss
strategies to build word vector representations that are sensitive of the
current context in which a word appears.

Lastly, Bolukbasi et al. (2016) showed that algorithms that learn nu-
merical representations amplify the various biases present in the train-
ing data, e.g., gender stereotypes, “to a disturbing extent.” For exam-
ple, they showed that for common representations, ⃗father − ⃗doctor ≈

⃗mother− ⃗nurse (where x⃗ indicates the vector representation of the word
x), or, in plain language, “doctor is to father what nurse is to mother.”
Or, similarly, m⃗an− ⃗computer programmer ≈ ⃗woman− ⃗homemaker.

8.6 Historical Background
Representation learning is a beautiful inter-disciplinary idea that spans
a variety of fields ranging from linguistics and cognitive science to com-
puter science (including computer architecture!). As expected, the dis-
tributional hypothesis idea comes from linguistics (Harris, 1954; Firth,
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1957). Firth, the originator of the “London school of linguistics,”12 ele-
gantly summarized distributional hypothesis as “a word is characterized
by the company it keeps.”

While the distributional hypothesis has been known since the 1950s,
it took approximately three decades before distributional techniques be-
came widespread. Some of the earliest distributional techniques included
(Brown et al., 1992), which introduced a clustering algorithm that iden-
tified “semantically sticky” groups of words using distributional sim-
ilarity. Schütze (1992) formalized a co-occurrence-based representation
learning algorithm similar to what we described in Section 8.1. Yarowsky
(1992); Resnik (1993) used distributional techniques for word sense dis-
ambiguation. Deerwester et al. (1990) explored low-rank approximations
of co-occurrence matrixes for document search.

Mikolov et al. (2013a) proposed the two forms of the word2vec algo-
rithm, one of which we discussed in Section 8.4. Pennington et al. (2014)
introduced the GloVe (from global vectors) algorithm, which includes a
more general form of the word2vec’s learning objective. Since then, these
algorithms have been extended into various directions (see next section).

One can argue that these learned representations provide functionality
similar to Kahneman’s System 1, i.e., (mental) activities that “operate
automatically and quickly, with little or no effort and no sense of volun-
tary control” (Kahneman, 2011). We will see some of these operations
(e.g., word similarity, word analogies) in the next chapter.

In chapter 12 we will discuss the encoder part of transformer net-
works, which learn contextualized word representations, i.e., represen-
tations that dynamically change depending on the context in which a
word appears. Arguably, these representations are more faithful to the
original distributional hypothesis. Importantly, learning such represen-
tations is computationally expensive, much more so than the word2vec
algorithm, which learns a single (static) representation for each word
in the vocabulary. As mentioned in Chapter 5, these algorithms were
realistically possible only once hardware support for parallel operations,
in the form of general-purpose GPUs, became available.

8.7 References and Further Readings
In this chapter we contrasted distributional techniques based on low-
rank approximations with methods that learn dense representations di-
12 https://www.britannica.com/biography/John-R-Firth

https://www.britannica.com/biography/John-R-Firth
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rectly. While the latter unquestionably train faster, Levy et al. (2015)
have shown that under similar training regimes, the representations
learned by the two directions are empirically equivalent.

The distributional techniques discussed in this chapter have been ex-
tended in several important directions. Lin (1997); Levy and Goldberg
(2014) proposed representation learning algorithms that use syntactic
context rather than surface information, as we used in this chapter.
Mrkšić et al. (2016); Vulić and Mrkšić (2018) showed how to learn rep-
resentations that capture not only the distributional hypothesis but also
other linguistic constraints such as antonymy and hypernymy. Yu and
Dredze (2015); Shwartz (2019); Vacareanu et al. (2020b) proposed com-
positional algorithms that learn representations of multi-word expres-
sions (rather than individual words).

Bolukbasi et al. (2016) showed that distributional techniques may am-
plify potential biases in the training data. Garg et al. (2018) exploited
these learned biases to develop metrics to show how gender and minor-
ity stereotypes in the United States evolved during the 20th and 21st
centuries. Bolukbasi et al. (2016) proposed a methodology for modifying
representations to remove gender stereotypes, while maintaining desired
associations. This problem is just one instance in the important field of
bias and fairness in machine learning (Mehrabi et al., 2021).

8.8 Summary
This chapter discussed methods that learn numerical representations
of words based on the distributional hypothesis of Harris (1954); Firth
(1957), who observed that words that occur in similar contexts tend to
have similar meanings. In particular, we introduced traditional distribu-
tional representations, which rely on co-occurrence vectors and, option-
ally, low-rank approximation methods such as singular value decomposi-
tion, and the word2vec algorithm, which learns directly word numerical
representations that are good at predicting the words in the neighbor-
hood.
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Implementing Text Classification Using Word

Embeddings

In the previous chapter we introduced word embeddings, which are real-
valued vectors that encode semantic representation of words. We dis-
cussed how to learn them, and how they capture semantic information
that makes them useful for downstream tasks.

In this chapter we show how to use word embeddings that have been
pretrained using a variant of the algorithm discussed in the previous
chapter. We show how to load them, explore some of their characteris-
tics, and show their application for a text classification task. As usual,
the code for this chapter is available in our repository. It is organized
into two notebooks: one corresponding to the explorations shown in
the first half of this chapter (chap9_embeddings), and a second one
in which we modify our previous classifier to use word embeddings
(chap9_classification).

9.1 Pre-trained Word Embeddings
There are several algorithms for training word embeddings, including
the original word2vec algorithm (Mikolov et al., 2013a) (which we dis-
cussed in the previous chapter), GloVe (Pennington et al., 2014), and
fastText (Bojanowski et al., 2017). They all provide the software for
training the embeddings as well as pretrained word embeddings on their
respective websites. In general, most open-domain word embeddings are
trained on large corpora that cover a variety of topics such as Wikipedia1
and Gigaword.2 Commonly, these embeddings are freely distributed so

1 https://en.wikipedia.org/wiki/Wikipedia:Database_download
2 https://catalog.ldc.upenn.edu/LDC2011T07
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house 0.60137 0.28521 -0.032038 -0.43026 0.74806 0.26223
-0.97361 0.078581 -0.57588 -1.188 -1.8507 -0.24887 0.055549
0.0086155 0.067951 0.40554 -0.073998 -0.21318 0.37167
-0.71791 1.2234 0.35546 -0.41537 -0.21931 -0.39661 -1.7831
-0.41507 0.29533 -0.41254 0.020096 2.7425 -0.9926 -0.71033
-0.46813 0.28265 -0.077639 0.3041 -0.06644 0.3951 -0.70747
-0.38894 0.23158 -0.49508 0.14612 -0.02314 0.56389 -0.86188
-1.0278 0.039922 0.20018

Figure 9.1 GloVe embedding corresponding to the word house, found in
the GloVe file glove.6B.50d.txt. We have broken the vector in several
lines for display purposes, but this is a single line in the text file.

that practitioners can use them in downstream tasks. We will use one
such set of vectors in this chapter.

Pretrained embeddings are usually distributed as a text file in which
each line represents a word vector. The first element in the line is the
word itself, and the rest of the elements are the vector components. This
is usually referred to as the word2vec format. For example, Figure 9.1
shows the line in the glove.6B.50d.txt file (from the GloVe website)
corresponding to the word house. This vector is represented by the word
itself, followed by 50 floating-point numbers corresponding to the 50-
dimensional vector.

Note that some embeddings files have a header line composed of two
numbers: the number of vectors (i.e., the number of lines in the file),
and the vector dimensionality. However, this is not always the case. For
example, the original word2vec implementation includes this header line,
but the more recent GloVe does not (probably because this information
can be inferred from the content of the file).

For the examples in the rest of the chapter, we will use the glove.6B.300d.txt
embeddings that can be downloaded from the GloVe website.3 This file
provides 400,000 word embeddings of 300-dimensions trained on texts
from Wikipedia 2014 and Gigaword 5.

We will begin our exploration of word embeddings using Gensim,4
a Python library that provides excellent support for loading and using
word embeddings, among other more advanced features.

[1]: from gensim.models import KeyedVectors

3 https://nlp.stanford.edu/projects/glove/
4 https://radimrehurek.com/gensim/

https://nlp.stanford.edu/projects/glove/
https://radimrehurek.com/gensim/
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fname = "glove.6B.300d.txt"
glove = KeyedVectors.load_word2vec_format(fname,␣

↪→no_header=True)
glove.vectors.shape

[1]: (400000, 300)

As we can see, the embeddings have been loaded and assigned to
the glove variable. Note that we had to specify that this file doesn’t
contain the header that is usually present in the word2vec format. The
glove.vectors attribute contains a 2-dimensional NumPy array with
400,000 rows and 300 columns, each row corresponding to a word em-
bedding.

9.1.1 Word Similarity
Gensim’s KeyedVectors class provides a method called most_similar
that receives a word and computes its cosine similarity to all other em-
beddings, and returns the topn most-similar words. By default, topn is
set to 10.

[2]: # common noun
glove.most_similar("cactus")

[2]: [('cacti', 0.6634564399719238),
('saguaro', 0.6195855140686035),
('pear', 0.5233486890792847),
('cactuses', 0.5178282260894775),
('prickly', 0.515631914138794),
('mesquite', 0.4844854772090912),
('opuntia', 0.4540084898471832),
('shrubs', 0.4536206126213074),
('peyote', 0.45344963669776917),
('succulents', 0.45127877593040466)]

The example above shows the top 10 most-similar words to the word
cactus, when using the 300-dimension GloVe embeddings trained on
Wikipedia and Gigaword. All ten most-similar words are related to cac-
tus in different ways: cacti and cactuses are its plural forms; saguaro,
peyote, opuntia, and prickly pear are types of cacti; and mesquite, shrubs,
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and succulents are other plants from arid climates. You can find more
examples of word similarity queries in the Jupyter notebook that accom-
panies this chapter. Also, as an exercise, try loading a different set of
embeddings trained with a different corpus (e.g., Twitter) to see if you
obtain different results!

9.1.2 Word Analogies
As we discussed in the previous chapter, the semantic information en-
coded by word embeddings captures much more than word similar-
ity. To surface this additional information, we will use word analogies
represented using additional vector operations. For example, a well-
known analogy that highlights gender information is: ⃗king − m⃗an ≈
⃗queen − ⃗woman, or, in plain language: “man is to king what woman is

to queen.” From this, it immediately follows that one can subtract the
meaning of man and add the meaning of woman to obtain the definition
of female royalty: ⃗king − m⃗an+ ⃗woman ≈ ⃗queen.

The same most_similar method we’ve been using can be repurposed
to find word analogies such as the one mentioned above. To this end,
two sets of words have to be provided to the most_similar method: a
list of positive words that should be added, and a list of negative words
that should be subtracted. For example, the code below implements the
left-hand side of the previous analogy:

[8]: # king - man + woman
glove.most_similar(positive=["king", "woman"],␣

↪→negative=["man"])

[8]: [('queen', 0.6713276505470276),
('princess', 0.5432624220848083),
('throne', 0.5386105179786682),
('monarch', 0.5347574353218079),
('daughter', 0.498025119304657),
('mother', 0.49564430117607117),
('elizabeth', 0.4832652509212494),
('kingdom', 0.47747090458869934),
('prince', 0.4668239951133728),
('wife', 0.46473267674446106)]

Another interesting analogy relation that shows how the embeddings
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have captured information about currencies is shown below. More ex-
amples are discussed in the Jupyter notebook.

[12]: # japan - yen + peso
glove.most_similar(positive=["japan", "peso"],␣

↪→negative=["yen"])

[12]: [('mexico', 0.5726831555366516),
('philippines', 0.5445369482040405),
('peru', 0.4838225543498993),
('venezuela', 0.4816672205924988),
('brazil', 0.46643102169036865),
('argentina', 0.4549050033092499),
('philippine', 0.4417840242385864),
('chile', 0.4396097660064697),
('colombia', 0.43862593173980713),
('thailand', 0.4339679479598999)]

9.1.3 Looking Under the Hood
Let us understand now how these queries are actually implemented.
First, we need to know what components we need. Clearly, we need the
embedding vectors themselves. They are stored in the vectors attribute
of the KeyedVectors object.

[14]: glove.vectors.shape

[14]: (400000, 300)

As we mentioned previously, this is a 2-dimensional NumPy array,
each row corresponding to a word in the vocabulary. These embeddings
are not normalized, but normalized embeddings can be obtained using
the get_normed_vectors method.

[15]: normed_vectors = glove.get_normed_vectors()
normed_vectors.shape

[15]: (400000, 300)

We also need to know the mapping between words and the matrix
rows. The KeyedVectors object stores this mapping in a list of terms
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called index_to_key, and a term-to-index dictionary called key_to_index.
Below we show only the first 5 terms to save space, but you can inspect
the whole vocabulary in the Jupyter notebook.

[16]: glove.index_to_key

[16]: ['the', ',', '.', 'of', 'to', …]

[17]: glove.key_to_index

[17]: {'the': 0, ',': 1, '.': 2, 'of': 3, 'to': 4, …}

9.1.4 Word Similarity from Scratch
Implementing the word similarity function ourselves is a good exercise to
ensure that we understand how cosine similarity works, and to practice
our NumPy skills.

We will write a function called most_similar_words that will take
a word, the embeddings matrix, the vocabulary in the form of the
index_to_key list and key_to_index dictionary, and the number of
similar words to return (defaults to 10).

[18]: import numpy as np

def most_similar_words(word, vectors, index_to_key,␣
↪→key_to_index, topn=10):

# retrieve word_id corresponding to given word
word_id = key_to_index[word]
# retrieve embedding for given word
emb = vectors[word_id]
# calculate similarities to all words in out␣

↪→vocabulary
similarities = vectors @ emb
# get word_ids in ascending order with respect to␣

↪→sim score
ids_ascending = similarities.argsort()
# reverse word_ids
ids_descending = ids_ascending[::-1]
# get bool array with word_id position set to false
mask = ids_descending != word_id
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# obtain new array of indices that doesn't contain␣
↪→word_id

ids_descending = ids_descending[mask]
# get topn word_ids
top_ids = ids_descending[:topn]
# retrieve topn words with their corresponding␣

↪→similarity score
top_words = [(index_to_key[i], similarities[i]) for␣

↪→i in top_ids]
# return results
return top_words

The implementation of most_similar_words is straightforward. First,
we find the word id for the given word, using the key_to_index dictio-
nary. Then we retrieve the row from the vectors matrix that corresponds
to that word. The next step is computing the cosine similarity between
the word of interest and the rest of the vocabulary. Recall that the cosine
similarity is equivalent to a dot product if the vectors are normalized.
We use this equivalence by performing a matrix-vector multiplication
between the word embedding and the embedding matrix using Python’s
at operator (denoted as @ in code). This means that we must pass the
normalized embeddings as an argument to this function. Next, we need
to sort the similarities preserving the mapping to the words in the vo-
cabulary. We achieve this using the argsort NumPy method, which
returns the indices in sorted (ascending) order. Since we need them in
descending order, the next step is to reverse this list of indices. Obvi-
ously, the most similar word to whichever word we’re querying is the
word itself, but that is not an interesting result, so we will remove it
from the results. We do this by using NumPy’s ability to index arrays
using booleans. We first create a new array in which the position cor-
responding to the query word is set to False and every other element
is set to True, and we use this boolean array to index the list of ids.
Lastly, we create a list of tuples of the form (word, similarity) for the
topn words, and return the results.

Now we will test our implementation of word similarity using the word
cactus. You can compare the results to the ones obtained by KeyedVectors’s
most_similar method.
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[19]: vectors = glove.get_normed_vectors()
index_to_key = glove.index_to_key
key_to_index = glove.key_to_index
most_similar_words("cactus", vectors, index_to_key,␣

↪→key_to_index)

[19]: [('cacti', 0.66345644),
('saguaro', 0.6195855),
('pear', 0.5233487),
('cactuses', 0.5178282),
('prickly', 0.51563185),
('mesquite', 0.4844855),
('opuntia', 0.45400846),
('shrubs', 0.4536207),
('peyote', 0.4534496),
('succulents', 0.45127875)]

9.1.5 Word Analogies from Scratch
The implementation of the word analogy function is not that much dif-
ferent from our most_similar_word function above. The main difference
between this function and most_similar_words is that now we have two
lists of words that we need to combine into a single embedding. We first
add the positive words into a single vector, and we do the same for the
negative words. Then we subtract the negative vector from the positive
one, and normalize the result. The similarity scores are computed the
same way as before, but now we need to remove several words from the
results, so this time we use NumPy’s isin function, which checks for
any of the words in given_word_ids. We then package the results the
same way we did before, and return them.

[20]: from numpy.linalg import norm

def analogy(positive, negative, vectors, index_to_key,␣
↪→key_to_index, topn=10):

# find ids for positive and negative words
pos_ids = [key_to_index[w] for w in positive]
neg_ids = [key_to_index[w] for w in negative]
given_word_ids = pos_ids + neg_ids
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# get embeddings for positive and negative words
pos_emb = vectors[pos_ids].sum(axis=0)
neg_emb = vectors[neg_ids].sum(axis=0)
# get embedding for analogy
emb = pos_emb - neg_emb
# normalize embedding
emb = emb / norm(emb)
# calculate similarities to all words in out␣

↪→vocabulary
similarities = vectors @ emb
# get word_ids in ascending order with respect to␣

↪→sim score
ids_ascending = similarities.argsort()
# reverse word_ids
ids_descending = ids_ascending[::-1]
# get bool array with given_word_ids set to false
given_words_mask = np.isin(ids_descending,␣

↪→given_word_ids, invert=True)
# obtain new array of indices excluding␣

↪→given_word_ids
ids_descending = ids_descending[given_words_mask]
# get topn word_ids
top_ids = ids_descending[:topn]
# retrieve topn words with their corresponding␣

↪→similarity score
top_words = [(index_to_key[i], similarities[i]) for␣

↪→i in top_ids]
# return results
return top_words

Now let’s try our implementation with the same ⃗king−m⃗an+ ⃗woman

query we discussed previously. Please compare the results to the ones
obtained by Gensim.

[21]: positive = ["king", "woman"]
negative = ["man"]
vectors = glove.get_normed_vectors()
index_to_key = glove.index_to_key
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key_to_index = glove.key_to_index
analogy(positive, negative, vectors, index_to_key,␣

↪→key_to_index)

[21]: [('queen', 0.67132765),
('princess', 0.5432625),
('throne', 0.53861046),
('monarch', 0.53475744),
('daughter', 0.49802512),
('mother', 0.49564427),
('elizabeth', 0.48326525),
('kingdom', 0.47747087),
('prince', 0.46682402),
('wife', 0.46473265)]

9.2 Text Classification with Pretrained Word
Embeddings

In this section we will continue using the AG News classification dataset
introduced in previous chapters. Most of the data preparation is the
same, up to tokenization. However, we need to remember that the em-
beddings were trained on a different corpus, so it would be a good idea
to estimate how well they cover the words AG News dataset. To achieve
this, we load the embeddings just like we did previously. Then we count
the tokens in our corpus that do not appear in the embeddings vocab-
ulary, as well as the total number to tokens. We use these numbers to
print some informative statistics such as the proportion of unknown to-
kens in the corpus. We also print the top ten unknown tokens. You can
use the Jupyter notebook to explore this task further.

[9]: from collections import Counter

def count_unknown_words(data, vocabulary):
counter = Counter()
for row in tqdm(data):

counter.update(tok for tok in row if tok not in␣
↪→vocabulary)

return counter
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# find out how many times each unknown token occurrs in␣
↪→the corpus
c = count_unknown_words(train_df['tokens'], glove.

↪→key_to_index)

# find the total number of tokens in the corpus
total_tokens = train_df['tokens'].map(len).sum()

# find some statistics about occurrences of unknown␣
↪→tokens
unk_tokens = sum(c.values())
percent_unk = unk_tokens / total_tokens
distinct_tokens = len(list(c))

print(f'total number of tokens: {total_tokens:,}')
print(f'number of unknown tokens: {unk_tokens:,}')
print(f'number of distinct unknown tokens:␣

↪→{distinct_tokens:,}')
print(f'percentage of unkown tokens: {percent_unk:.2%}')
print('top 10 unknown words:')
for token, n in c.most_common(10):

print(f'\t{n}\t{token}')

total number of tokens: 5,273,730
number of unknown tokens: 65,847
number of distinct unknown tokens: 24,631
percentage of unkown tokens: 1.25%
top 10 unknown words:

2984 /b
2119 href=
2117 /a
1813 //www.investor.reuters.com/fullquote.aspx
1813 target=/stocks/quickinfo/fullquote
537 /p
510 newsfactor
471 cbs.mw
431 color=
417 /font
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Our analysis indicates that only 1.25% of the tokens are not accounted
for in the embeddings vocabulary. Further, the most common unknown
words seem to be URL fragments. This is encouraging. However, for
more robustness, we will introduce a couple of special embeddings that
are often needed when dealing with word embeddings. The first one is an
embedding used to represent unknown words. A common strategy is to
use the average of all the embeddings in the vocabulary for this purpose.
The second embedding we will add will be used for padding. Padding is
required when we want to train with (mini-)batches because the lengths
of all the examples in a given batch have to match in order for the batch
to be efficiently processed in parallel. The padding embedding consists
only of zeros, which essentially excludes these virtual tokens from the
forward/backward passes. None of these embeddings are included in the
pretrained GloVe embeddings, but other pretrained embeddings may
already include them, so it is a good idea to check if they are included
with the embeddings we are using before adding them.

[10]: # string values corresponding to the new embeddings
unk_tok = '[UNK]'
pad_tok = '[PAD]'

# initialize the new embedding values
unk_emb = glove.vectors.mean(axis=0)
pad_emb = np.zeros(300)

# add new embeddings to glove
glove.add_vectors([unk_tok, pad_tok], [unk_emb, pad_emb])

# get token ids corresponding to the new embeddings
unk_id = glove.key_to_index[unk_tok]
pad_id = glove.key_to_index[pad_tok]

unk_id, pad_id

[10]: (400000, 400001)

The new embeddings were added at the end of embedding collection,
so their ids are 400,000 and 400,001.

Now we need to generate a list of token ids for each training example.
Recall that we decided to ignore tokens that appear less than 10 times,
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so we need to replace those with [UNK] too, even if they appear in the
embedding vocabulary.

[13]: # find the length of the longest list of tokens
max_tokens = train_df['tokens'].map(len).max()

# return unk_id for infrequent tokens too
def get_id(tok):

if tok in vocabulary:
return glove.key_to_index.get(tok, unk_id)

else:
return unk_id

# function that gets a list of tokens and returns a list
# of token ids, with padding added accordingly
def token_ids(tokens):

tok_ids = [get_id(tok) for tok in tokens]
pad_len = max_tokens - len(tok_ids)
return tok_ids + [pad_id] * pad_len

# add new column to the dataframe
train_df['token ids'] = train_df['tokens'].

↪→progress_map(token_ids)
train_df

Next, we create a Dataset object from the padded lists of token ids.
This one is even easier since the lists of token ids are ready. So all that
is required is turning them into tensors.

[15]: from torch.utils.data import Dataset

class MyDataset(Dataset):
def __init__(self, x, y):

self.x = x
self.y = y

def __len__(self):
return len(self.y)

def __getitem__(self, index):
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x = torch.tensor(self.x[index])
y = torch.tensor(self.y[index])
return x, y

Lastly, we need to modify the model class to indicate that we now
use embedding vectors. To this end, we will add a nn.Embedding layer
to lookup embeddings by their token ids. This layer will be initialized
from a tensor containing the pretrained embeddings. Also, the pad_id
is specified when creating the embedding layer. When a nn.Embedding
layer gets initialized using the from_pretrained method, the embed-
dings are not updated during training. We will keep it that way for this
example, but that could be changed by setting the freeze parameter to
False. The rest of the layers are the same as in our previous example,
except that now our input size is the size of one embedding (e.g., 300)
instead of the size of the vocabulary like last time.

The forward function of the Model class changes significantly. This
time we are encoding the text as an average of the embeddings of all
the words it contains. To compute the denominator of this average, we
obtain the length of each text by counting how many of its words are not
the virtual padding token. Then we sum all the embeddings and divide
by the number of non-padding tokens. Adding all embeddings is safe,
because padding embeddings are comprised of zeros. This process leaves
us with a single embedding for the whole text, which is then passed to
the rest of the layers.

[16]: from torch import nn
import torch.nn.functional as F

class Model(nn.Module):
def __init__(self, vectors, pad_id, hidden_dim,␣

↪→output_dim, dropout):
super().__init__()
# embeddings must be a tensor
if not torch.is_tensor(vectors):

vectors = torch.tensor(vectors)
# keep padding id
self.padding_idx = pad_id
# embedding layer
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self.embs = nn.Embedding.
↪→from_pretrained(vectors, padding_idx=pad_id)

# feedforward layers
self.layers = nn.Sequential(

nn.Dropout(dropout),
nn.Linear(vectors.shape[1], hidden_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, output_dim),

)

def forward(self, x):
# get boolean array with padding elements set to␣

↪→false
not_padding = torch.isin(x, self.padding_idx,␣

↪→invert=True)
# get lengths of examples (excluding padding)
lengths = torch.count_nonzero(not_padding,␣

↪→axis=1)
# get embeddings
x = self.embs(x)
# calculate means
x = x.sum(dim=1) / lengths.unsqueeze(dim=1)
# pass to rest of the model
output = self.layers(x)
return output

The training and evaluation steps are the same before. The results of
this model on the AG News test partition are displayed below:

precision recall f1-score support

World 0.92 0.88 0.90 1900
Sports 0.95 0.97 0.96 1900

Business 0.85 0.86 0.85 1900
Sci/Tech 0.86 0.87 0.87 1900

accuracy 0.90 7600
macro avg 0.90 0.90 0.90 7600

weighted avg 0.90 0.90 0.90 7600
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Comparing these results with the ones obtained by the multilayer
perceptron with explicit features in Chapter 7, we observe that on this
particular task utilizing embeddings as features does not yield a per-
formance improvement. Notably, this is a small dataset and a rather
simplistic task where the presence of certain words is sufficient to dis-
tinguish the category of an article (e.g., the word basketball is highly
indicative of the label Sports). Nevertheless, in other tasks where dis-
tinctions are more nuanced, or in which there is less likely to be word
overlap between texts of interest, word embeddings do provide necessary
signal. Additionally, when there are class imbalances, word embeddings
can supplement underrepresented classes by bringing the external knowl-
edge gained during their pretraining.

9.3 Summary
In this chapter we showed how to explore the semantic space encoded
by word embeddings through word similarity and analogies, as well as
one way to use them for text classification. At this point we have not
taken into consideration the order in which the words appear, i.e., we
averaged the embeddings for all the words in the text using a bag-of-
words representation of text. In subsequent chapters we will explore how
to incorporate word order into the learned representations of text.
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Recurrent Neural Networks

Up to this point, we have only discussed neural approaches for text clas-
sification (e.g., review and news classification) that handle the text as a
bag of words. That is, we aggregate the words either by representing them
as explicit features in a feature vector, or by averaging their numerical
representations (i.e., embeddings). Although this strategy completely
ignores the order in which words occur in a sentence, it has been repeat-
edly shown to be a good solution for many practical NLP applications
that are driven by text classification, to the frustration of many of us
who care about linguistic information:

Nevertheless, for many NLP tasks, we need to capture the word-order
information more explicitly. We will discuss several of these applications
in Chapter 16. For a simple example, in this chapter we will use part-
of-speech (POS) tagging, which is the task of assigning each word in a
sequence its part of speech, i.e., a category that captures its grammatical
properties such as noun, verb, or adjective. The Penn Treebank corpus,1
one of the most widely used English corpora that contains texts anno-
tated with part of speech information (and other linguistic information)
uses 36 such parts of speech.2 Assigning POS tags to words clearly bene-
1 https://catalog.ldc.upenn.edu/LDC99T42
2 https:

//www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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Figure 10.1 “Vanilla” recurrent neural network, where si are state vec-
tors, xi are input vectors, and yi are output vectors. R and O are functions
that compute the next state and the current output vector, respectively.

fits from word order. For example, for English, once we see a determiner,
it is much more likely that the next word will be a noun or an adjec-
tive, and not a verb. Thus, assigning a POS tag to a word depends not
only on the word itself, but also on the context in which it appears. To
continue the previous example, assume we are trying to tag the word
teaching. From a large corpus such as the Penn Treebank, we may learn
that this word can be a noun or a verb, and is more commonly seen as a
verb. However, if the preceding word in the sentence is the, we can con-
fidently assign it the noun POS tag. Sequence models capture exactly
this scenario, where classification decisions must be made using not only
the current information but also the context in which it appears.

10.1 Vanilla Recurrent Neural Networks

Figure 10.1 shows a generic neural architecture that models sequence
information called a recurrent neural network (RNN). Each of the blocks
in the architecture is called a cell. Each cell is assigned to one individual
element in the sequence, e.g., for POS tagging, there is one cell per word.
The job of cell i is to produce an output vector yi using as input an input
vector xi, e.g., for POS tagging the vectors xi are word embeddings
(either static or contextualized), and a state vector si−1, which captures
the information that has “flown” through the sequence until this cell.
The state and output vectors are computed using the R and O functions,
respectively. That is, in general:

si = R(si−1, xi) (10.1)
yi = O(si) (10.2)
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The simplest RNN (Elman, 1990) uses the following implementations
for R and O:

si = R(si−1, xi) = f(Ws · si−1 + Wx · xi + b) (10.3)
yi = O(si) = si (10.4)

where Wx, Ws, and b are the parameters that are shared between all
cells in the network.3 Thus, the R function is very similar to one layer of
a feed-forward network (see Chapter 5), but it has two sets of weights:
one that operates over the input vector xi (Wx), and one that operates
over the state vector si−1 (Ws). Similar to a feed-forward network, b
contains the bias weights, and f is a non-linear function such as a sigmoid
or hyperbolic tangent. The dimensions of vectors and matrices in this
architecture are: xi ∈ Rdin , si, yi, b ∈ Rdout , Wx ∈ Rdout×din , and Ws ∈
Rdout×dout , where din indicates the dimension of the input vector, dout is
the dimension of the state and output vectors, Rd indicates a real-valued
vector of dimension d, and Rr×c indicates a real-valued matrix with r

rows and c columns.
Thus, Equations 10.3 and 10.4 capture both input information, which

flows in through the vertical arrows in Figure 10.1 and information about
the sequence, which flows in through the horizontal arrows in the figure.
Importantly, though somewhat different from the feed-forward networks
we have seen so far, an RNN is just another neural network architecture.
Hence, we can train it, which in this case means learning the cell pa-
rameters Wx, Ws, and b (and possibly adjusting the input embeddings
xi) using essentially the same backpropagation algorithm we discussed
in Chapter 5. This backpropagation variant for sequences is called back-
propagation through time (Werbos, 1990) because these sequence archi-
tectures have also been applied to time series where each cell in the
network corresponds to a step in time.

But where does the signal for backpropagation through time come
from? In other words, what training data and loss functions do we need
for sequence models? This depends on their application. There are three
typical ways to use RNNs:

Acceptor RNN: This configuration adds a classification layer, e.g., a
simple feed-forward neural network, on the last output vector

3 In this chapter, we will use the tensor notation that was briefly introduced in
Chapter 5, which expresses the weights in the network as matrices. This is
because we now must handle multiple weight matrices at the same time, and the
explicit notation used in Chapter 5 becomes too cumbersome in this situation.
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yn, where n is the length of the sequence. Theoretically, yn cap-
tures information about the entire sequence, and thus, should
be a good summary for the whole text. (This is not entirely true.
We will revisit this observation in Section 10.3.) For example,
one could implement a binary review classifier by adding a sin-
gle layer on top of yn that projects the yn vector into a single
neuron with a sigmoid nonlinearity. The training data for this
network would use values of 1 for positive reviews, and 0 for neg-
ative ones. The network would be trained using either the mean
squared error loss or the binary cross entropy (see Chapter 6). A
multiclass review classifier would be implemented using a layer
that projects yn into an output layer with as many neurons as
the number of classes, and be trained using the regular cross
entropy loss.

Transducer RNN: This network receives supervision during training
for each cell. For example, when training a POS tagger, we want
to make sure that the network learns to predict the correct POS
tag for every word in the sequence. That is, a transducer adds
one or more layers on top of each yi vector to predict something
specific for each cell such as the POS tag of word i. During
training, the transducer calculates the individual loss of each cell
(e.g., cross entropy for POS tagging); these individual losses are
summed up into a single value that is used for backpropagation.

Encoder-decoder RNN: This architecture combines one encoder RNN,
which encodes an input sequence into a single vector (similar to
the acceptor RNN), with a decoder that generates one element
at a time from an output sequence. This architecture is typically
used for machine translation, where the input sequence is text
in the source language, and the output sequence is the transla-
tion in the target language. We will discuss this architecture in
detail in Chapter 14.

We will introduce multiple applications of all these RNN architectures
in detail in Chapter 16.

10.2 Deep Recurrent Neural Networks
Before we discuss the problems that plague RNNs and their correspond-
ing solutions, it is worth mentioning that RNNs can be composed into
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Figure 10.2 Stacked or “deep” recurrent neural network.

more complex architectures in multiple ways. The two most common
ones are shown in Figures 10.2 and 10.3. Stacked or deep RNNs (Fig-
ure 10.2) add multiple RNNs on top of each other. That is, the output
vector yi for the jth RNN becomes the input vector xi for the next
RNN (j + 1). In contrast, bidirectional RNNs (Figure 10.3) employ two
RNNs in parallel. Both operate over the same input embeddings, but
one traverses the text from left to right (or “forward,” assuming that
the writing system is left to right), and another scans the text right to
left (or “backward”). Let’s denote the output vectors of the former RNN
with yf, and the output vectors of the latter with yb. Then, the output
vector of the bidirectional RNN for word i is generated by concatenating
yf

i and yb
n+1−i: yi = [yf

i; yb
n+1−i].

It has been empirically observed that these more complex RNNs per-
form better for harder NLP tasks such as syntactic parsing (Dyer et al.,
2015; Dozat and Manning, 2016; Vacareanu et al., 2020a). This is not
that surprising. For example, syntactic signal for the English language
occurs both to the left and right of the verb, e.g., the subject typically
precedes the verb in a sentence, while the object follows it. This infor-
mation is handled much better by a bidirectional RNN.
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Figure 10.3 Bidirectional recurrent neural network.

10.3 The Problem with Simple RNNs: Vanishing
Gradient

While the previous section ends on a note of victory (deep recurrent net-
works capture language intricacies well!), we are not quite done. There
are several problems that we need to address. The first one is that the
simple RNN cell introduced in Section 10.1 suffers from the vanishing
gradient problem, i.e., when gradient values become too small to impact
the parameter updates in a meaningful way. In other words, vanishing
gradients cause learning to stop, which is clearly undesirable. This is
easy to demonstrate: let’s assume an RNN with two cells. In this case,
the state vector after the second cell is computed using the equation:

s2 = R(s1, x2) = R(R(s0, x1), x2)

= f(Ws · f(Ws · s0 + Wx · x1 + b) + Wx · x2 + b)

Thus, the computation of the state vector relies on chaining several
multiplications of the nonlinear function f . Recall that the activation
functions f typically produce small values, e.g., the hyperbolic tangent
is bound to the interval [−1, 1] (see Section 6.3). Even with unbounded
activation functions such as ReLU, it is common that their outputs are
normalized to be centered around zero and have a standard deviation of
1 (see Section 6.8). Multiplying several such values will quickly yield very
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Figure 10.4 Intuition behind the LSTM architecture.

small values, which, in turn, will cause vanishingly small parameter up-
dates (see the equations of back-propagation introduced in Section 5.3).

To mitigate the vanishing gradient problem in RNNs, we introduce
next a recurrent network architecture that replaces the multiplicative
approach in the above simple RNN cell with an additive method.

10.4 Long Short-Term Memory Networks
Long short-term memory networks, or LSTMs, are recurrent neural
networks that address the vanishing gradient problem discussed above
(Hochreiter and Schmidhuber, 1997). To this end, LSTMs replace the
multiplicative architecture used by the vanilla RNNs with an additive
architecture, i.e., transitions between cells are handled (mostly) with
additions and subtractions rather than multiplications. While the math
behind this gets a little complicated, the intuition behind LSTMs is sim-
ple: imagine that cells in an RNN are connected by a conveyor belt that
carries information throughout the whole sequence (see Figure 10.4).
Each cell subtracts some information that is no longer needed from the
conveyor belt, and adds some new one from the current input. Then,
the state vector si for cell i is computed using the information available
at this moment on the conveyor belt.

Before we explain the mathematical operations that implement this
intuition, we need to introduce neural gates, which are simple mecha-
nisms that control access to multi-dimensional vectors. In the simplest
scenario, these gates are binary, i.e., they either let an element pass
through or not. The left part of Figure 10.5 shows an example of such
a binary gate. These gates are implemented as element-wise products
(indicated with the operator ⊙)4 of the gate vector g with the original
4 The element-wise vector product operation is often called a Hadamart product in

the literature.
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Figure 10.5 Example of a binary gate (left) and gate with real-valued
elements (right).

vector x. In practice, we would like to learn how much of the original
vector to let pass through the gate. Thus, most gate mechanisms (in-
cluding the ones we will introduce below) use gate vectors that contain
real-valued numbers in the interval [0, 1], which are learned with the
rest of the network parameter during back-propagation. The right part
of Figure 10.5 shows an example of such a gate.

LSTMs use three types of gates, defined as follows:

Forget gate (f) – controls how much of the content on the conveyor
belt to preserve in the current cell,

Input gate (i) – decides how much of the input local to the current
cell to add to the conveyor belt, and

Output gate (o) – controls how much of the conveyor belt vector to
include in the hidden state vector for each cell.

To formalize, let us denote with ct the vector that stores the content
of the conveyor belt for the cell at position t in the sequence, and with
ft, it, ot the forget, input, and output gate vectors for cell t. Then, the
ct vector is computed as:

ct = ft ⊙ ct−1 + it ⊙ c̃t (10.5)

where ct−1 is the conveyor belt vector for the previous cell at position
t− 1, and c̃t is the input available to this cell (we will formally define it
in a minute). Further, the hidden state ht for cell t is then computed as:

ht = ot tanh(ct) (10.6)

where tanh is the hyperbolic tangent function we saw before. These two
equations implement the intuition previously described. Equation 10.5
shows that the vector that stores the information on the conveyor belt
is adjusted at position t to forget some of the previous information,
while adding some new content. Equation 10.6 shows that the LSTM
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hidden states are computed by filtering the conveyor belt vector through
a dedicated gate.

The cell’s input vector c̃t is computed as a transformation of the vector
that concatenates the input embedding vector to this cell xt (e.g., the
word embedding that corresponds to this cell) and the hidden state of
the previous cell ht−1:

c̃t = tanh(Wc[xt;ht−1] + bc) (10.7)

Thus, c̃t is the output of a feed-forward neural network defined by the
parameters Wc and bc, which receives as input information specific to
cell t, i.e., the concatenation of xt and ht−1. Note that the parameters
of this feed-forward neural network (Wc and bc) are shared across all
cells in the sequence. This reduces the number of the parameters that
the LSTM has to learn, while preserving cell-specific inputs.

The three LSTM gates are computed in a similar way:

ft = tanh(Wf [xt;ht−1] + bf ) (10.8)
it = tanh(Wi[xt;ht−1] + bi) (10.9)

ot = tanh(Wo[xt;ht−1] + bo) (10.10)

Thus, the parameters to be learned for a LSTM consist of four ma-
trices, Wc, Wf , Wi, and Wo (and the corresponding bias terms). In
some cases, the input embedding vectors (xt) are also learned together
with the above matrices. That is, the x vectors can be initialized with
embeddings produced by a distributional similarity algorithm (e.g., the
word2vec algorithm from Chapter 8), and then adjusted to the task at
hand through the regular back-propagation algorithm that learns the
other LSTM parameters.

Since the introduction of LSTMs in 1997 (Hochreiter and Schmidhu-
ber, 1997), several other RNN variants have been proposed. For example,
the Gated Recurrent Unit (GRU) is a popular LSTM alternative (Cho
et al., 2014). The key change in the GRU is that the forget gate is con-
nected to the input gate: ft = 1− it. That is, we introduce as much new
information on the conveyor belt as what we forgot from the previous
cell. The key advantage of this simplification is that it reduces the num-
ber of parameters to be learned (from four matrices to three). While the
many LSTM variants differ in their implementation, the intuition behind
all of them is the same: they mitigate the vanishing gradient problem
behind multiplicative architectures by switching to additive approaches.
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Figure 10.6 Conditional random fields architecture on top of an RNN.

For more details, we refer the reader to Christopher Olah’s excellent blog
(Olah, 2015).

10.5 Conditional Random Fields
As discussed, our POS tagger can be implemented using a transducer
RNN. That is, the transducer RNN predicts the POS tag for every word
in the sequence using the hidden-state embedding produced by an RNN.
The typical RNN used in these scenario is a bidirectional LSTM (biL-
STM), which guarantees that information both to the left and to the
right of each word is used in the prediction. However, during training,
the transducer’s loss maximizes the probability of the correct tag for
each word in the sequence independently of the other tags. This is not
always ideal: in many situations, the assignment of labels to words in a
sequence needs to be performed by looking at the entire sequence jointly
to understand what the most meaningful assignment overall is. Probably
the most famous examples of such situations are garden-path sentences,
i.e., sentences whose understanding requires a double take because the
first and most likely interpretation (from both people and machines!)
tends to be incorrect (Fowler, 1994; Wikipedia, n.d.). Figure 10.6 shows
a simple example of such a garden-path sentence: The old man the boat.
In this example, the reader scanning the sentence left-to-right tends to
assign the part-of-speech tag noun (NN) to the word man, which turns
out to be incorrect. The correct POS tag for man is verb in the past
tense (VBD), which can only be inferred after the entire text is scanned.
Computationally, the fact that the second determiner the is highly un-
likely to follow a noun (man in this case) is the hint that the initial
assignment is incorrect.
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Figure 10.7 Lattice of possible tag assignments for the example sentence
from Figure 10.6. For simplicity, we only show four of the possible part-
of-speech tags: DT - determiner, NN - noun, VBD - verb in past tense, and
JJ - adjective. The thick (green) lines indicate the correct path in the
lattice; the dashed (red) lines indicate the incorrect path suggested by
the first interpretation of the garden-path sentence.

Conditional random fields (CRF) were introduced to handle this joint
assignment problem (Lafferty et al., 2001). While they were introduced
in the context of a different probabilistic framework, here we will discuss
them as they were adapted to operate on top of RNNs (Lample et al.,
2016). Informally, CRFs model not only the individual tag probabilities
(i.e., the vertical arrows that connect the hidden-state embeddings to
the tags in the figure), but also the transition probabilities between two
adjacent tags (the bidirectional horizontal arrows in the figure), which
are not explicitly modeled by RNNs.

A bit more formally, CRFs inspect all possible paths in the lattice
that contains all tag assignments and the transitions between them (as
shown in Figure 10.7), and select the path in this lattice that has the
highest overall probability. The probability of a path includes both the
probabilities of individual tags as well as the probabilities of transitions
between tags. Because of the latter, CRFs can discard paths with im-
probable transitions such as the transition from man as a noun to the
determiner the. Next, we will discuss how to train CRFs, and then, how
to efficiently apply a trained CRF model on new texts.
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10.5.1 Training a CRF with the Forward Algorithm
As mentioned, unlike the traditional transducer RNN that maximizes the
probabilities of individual labels during training, the CRF optimizes the
probability of the complete sequence of correct labels, i.e., the probability
of the correct path in the lattice of possible label assignments. Before
we discuss how this happens, let’s formalize the probability of an entire
sequence of labels y = (y1, y2, . . . , yn), where yi is the label assigned
to word i in a sequence of n words. The overall score s of such a path
is computed by aggregating two types of scores: the individual score
produced by the RNN for each word in the sequence, and the transition
score between any two consecutive labels:

s(y) =
n∑

i=1

R[yi, i] +

n∑
i=0

T [yi, yi+1] (10.11)

where R is the matrix of individual label scores produced by the RNN,
i.e., R[y, i] is the score of label y for word i in the sequence, and T
is a matrix that stores the transition scores between any two labels,
i.e., T [yi, yj ] is the transition score from label yi to yj .5 Note that the
second summation in Equation 10.11 includes two virtual labels y0 and
yn+1, which are set to indicate the beginning and end of the sequence:
y0 = start and yn+1 = stop. Thus, R has dimension k × n; T has
dimension k × k, where n is the number of words in the sequence, and
k is the total number of distinct labels including the virtual start and
stop labels (e.g., the number of possible POS tags in our example, plus
two for the virtual labels).

Importantly, the R scores are computed just like in any vanilla trans-
ducer. For example, the most common setting is to use a one-layer (some-
times two-layer) feed-forward neural network that takes as input the
hidden state of the underlying RNN and outputs as many neurons as
the number of labels to be predicted. The values in the transition ma-
trix T are learned directly from the training data, i.e., we initialize them
randomly, and adjust them through back-propagation. After training,
T should contain high values for likely transitions, e.g., from the deter-
miner POS tag (DT) to the common noun tag (NN), and low values for
unlikely ones, e.g., from DT to verb POS tags (e.g., VBD).

Next, we convert the above score into an actual probability using the
softmax formula:
5 To avoid an abuse of subscript font, here we use square brackets to indicate

indices in a matrix.
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p(y) = es(y)∑
ỹ∈Y es(ỹ)

(10.12)

where ỹ iterates through all the possible paths in the complete lat-
tice of words × labels Y (e.g., such as the one shown in Figure 10.7).
Working with probabilities of label sequences rather than scores has
multiple advantages. First, it keeps the values bounded to the interval
[0, 1], which mitigates the exploding gradient problem. Second, maxi-
mizing this probability has two desired effects: it maximizes the score of
the correct sequence of labels (which appears in the numerator in the
probability formula), and it minimizes the scores of all other incorrect
paths in the lattice (which are part of the denominator). This is achieved
with a cost function that is the negative log likelihood of the correct se-
quence of labels y: − log(p(y)). Thus, the cost function of the CRF for
the correct prediction for the entire sequence, y, becomes:

C(y) = − log(p(y)) = log(
∑
ỹ∈Y

es(ỹ))−s(y) = logSumExpỹ∈Y(s(ỹ))−s(y)

(10.13)
where logSumExp is a function that computes the logarithm of sum of
exponentials. That is:

logSumExp(x) = log(
∑
i

exi) (10.14)

Importantly, the implementation of logSumExp computes the above for-
mula in a stable way. To clarify what this means, consider a naive im-
plementation where we first compute each exponential, then the sum,
and only then the logarithm. Because the CRF scores (Equation 10.11)
are unbounded, we may run into overflows (i.e., numbers that are too
large to be represented with the given range of digits available in the
computer) in the very first step of the procedure. For our purposes, it
is sufficient to know that logSumExp avoids this problem through a
mathematical trick.6

Going back to the cost function of the CRF (Equation 10.13), s(y)
can be trivially computed using Equation 10.11. The complicated part
of the loss is the first component, which needs to apply logSumExp on
6 For the mathematically-inclined reader, Wikipedia as well as the PyTorch CRF

tutorial provide the implementation for this function. See, for example, the
implementation of the log_sum_exp here:
https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html.

https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html
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all the possible paths ỹ in the lattice. A naive enumeration of all these
paths has a cost of nk, where n is the number of words in the sentence,
and k is the number of possible labels (Jurafsky and Martin, 2009). The
forward algorithm7 was introduced to address this problem; as we will
see, it reduces the cost of computing the sum of probabilities for all
possible label sequences in the lattice from nk to nk2, which is much
more manageable.

Algorithm 12 lists a version of the forward algorithm that is adapted to
compute the logSumExp part of the loss function. The intuition behind
this algorithm is fairly simple: for every node in the lattice the algorithm
computes the sum (or rather logSumExp in log space) of the s(ỹ) values
for all paths ỹ that end in that node. For example, for the word old
with the part-of-speech NN in Figure 10.7, the algorithm computes the
logSumExp for four paths: one that goes through the word The with POS
tag DT, one that goes through The as NN, one that goes through The as
VBD, and a last one that traverses The as JJ. These values are stored in
the variable forward, where forward[i, j] indicates this logSumExp for
the ith label and the jth word in the sequence.

More specifically, lines 1 – 3 in the algorithm initialize the first col-
umn in the lattice with the cost of producing the corresponding label
and transitioning to each of these nodes from start. Note that because
all paths begin at the virtual start node, there is no R cost for this la-
bel. Further, we can simplify the forward values in the first column to:
forward[l, 1] = logSumExp(T [start, yl]+R[yl, 1]) = log(eT [start,yl]+R[yl,1]) =

T [start, yl]+R[yl, 1] (line 2 in the algorithm). Lines 4 – 7 iteratively com-
pute the forward values for the other columns in the lattice. That is, for
the ith word in the sequence and the label index l, forward[l, i] accumu-
lates the path scores from all nodes in the previous lattice column to the
current one. Each of these scores is computed as the logSumExp of the
forward value for the corresponding previous node (forward[l′, i− 1]),
which accumulates all scores up to that point, plus the score of tran-
sitioning from the previous node to the current one (T [yl′ , yl]) and the
score of producing the current label (R[yl, i]). Lastly, line 9 computes
the logSumExp for all paths ending in the stop node by accumulating
the transition score to stop from all nodes in the last layer in the lattice
(T [yl, stop]).

7 The terminology is unfortunately overloaded here: forward in the context of this
algorithm refers to traversing the lattice of possible label assignments and
computing the sum of all path probabilities, not to a feed-forward layer in a
neural network.
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Algorithm 12: Variant of the forward algorithm that computes
logSumExp for all possible paths in the lattice.

1 for each label index l from 1 to k do
2 forward[l, 1] = T [start, yl] +R[yl, 1]

3 end
4 for each word position i from 2 to n do
5 for each label index l from 1 to k do
6 forward[l, i] =

logSumExpk
l′=1(forward[l

′, i− 1] + T [yl′ , yl] +R[yl, i])

7 end
8 end
9 output = logSumExpk

l=1(forward[l, n] + T [yl, stop])

10 return output

Figure 10.8 A simple lattice for the walkthrough example of the forward
algorithm.

Algorithm 12 looks deceptively simple. But it is actually not trivial to
show that it is indeed computing what we need, i.e., logSumExp(s(ỹ))
for all possible paths ỹ, correctly. To convince ourselves of this, let’s
trace the execution of the algorithm on the simpler lattice shown in
Figure 10.8. In this figure, sij indicates the node in the lattice corre-
sponding to label yi for word wj . For example, s21 corresponds to the
second label, y2, assigned to the first word in the sentence, w1. The first
block in Algorithm 12 (lines 1 – 3) computes:

forward[1, 1] = T [start, y1] +R[y1, 1]

forward[2, 1] = T [start, y2] +R[y2, 1]

which capture the cost of transitioning from the start node to s11 and
s21, respectively. The next block in the algorithm (lines 4 – 8) computes
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the forward values for the second word in the sequence. For example, for
the first label this computation is:

forward[1, 2] = logSumExp2
l′=1(forward[l

′, 1] + T [yl′ , y1] +R[y1, 2]))

= log(eforward[1,1]+T [y1,y1]+R[y1,2] + eforward[2,1]+T [y2,y1]+R[y1,2])

= log(eT [start,y1]+R[y1,1]+T [y1,y1]+R[y1,2] + eT [start,y2]+R[y2,1]+T [y2,y1]+R[y1,2])

= log(e{start,y1,y1} + e{start,y2,y1})

= logSumExp({start, y1, y1}, {start, y2, y1})

where we used {. . . } as syntactic sugar to indicate the sum of all T and
R scores along the included path. Similarly, the forward score for the
s22 node is:

forward[2, 2] = logSumExp({start, y1, y2}, {start, y2, y2})

Line 9 in the algorithm computes the logSumExp for all paths ending



178 Recurrent Neural Networks

in the stop node:

output = logSumExp2
l=1(forward[l, 2] + T [yl, stop])

= log(eforward[1,2]+T [y1,stop] + eforward[2,2]+T [y2,stop])

= log(eforward[1,2]eT [y1,stop] + eforward[2,2]eT [y2,stop])

= log(
(e{start,y1,y1} + e{start,y2,y1})eT [y1,stop] +

(e{start,y1,y2} + e{start,y2,y2})eT [y2,stop]

)

= log(
e{start,y1,y1}+T [y1,stop] +

e{start,y2,y1}+T [y1,stop] +

e{start,y1,y2}+T [y2,stop] +

e{start,y2,y2}+T [y2,stop]

)

= log(
e{start,y1,y1,stop} +

e{start,y2,y1,stop} +

e{start,y1,y2,stop} +

e{start,y2,y2,stop}

)

= logSumExp(
{start, y1, y1, stop},
{start, y2, y1, stop},
{start, y1, y2, stop},
{start, y2, y2, stop}

)

Thus, for every node in the lattice, the algorithm indeed computes what
we need, i.e., the logSumExp of all paths ending in that node. For the
stop node, this value is the logSumExp for all paths in the lattice (since
all of them end in stop), which is the first term of the cost function in
Equation 10.13.

The runtime cost of Algorithm 12 is driven by the three loops in lines
4 – 7 (there is a hidden loop in the logSumExp in line 6). Because the
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Algorithm 13: Viterbi algorithm that finds the path with the
maximum score in the lattice.

1 for each label index l from 1 to k do
2 viterbi[l, 1] = T [start, yl] +R[yl, 1]

3 backPointer[l, 1] = 0

4 end
5 for each word position i from 2 to n do
6 for each label index l from 1 to k do
7 viterbi[l, i] = maxk

l′=1(viterbi[l
′, i− 1] + T [yl′ , yl] +R[yl, i])

8 backPointer[l, i] =

argmaxk
l′=1(viterbi[l

′, i− 1] + T [yl′ , yl] +R[yl, i])

9 end
10 end
11 bestPathScore = maxk

l=1(viterbi[l, n] + T [yl, stop])

12 bestPathPointer = argmaxk
l=1(viterbi[l, n] + T [yl, stop])

13 return viterbi, bestPathScore, bestPathPointer

algorithm traverses the sequence of n words once (line 4), and the set of
labels twice (lines 5 and 6), this cost is nk2, which is much better than
the nk runtime cost of the naive implementation. This is possible because
the forward values cache the intermediate results for every node in the
lattice, which are then reused in the downstream computations (i.e., for
the following words in the lattice).

Sidebar 10.1 Dynamic programming

The forward algorithm described here belongs to a class of programs
in computer science called dynamic programming. In general, dynamic
programming reduces complex programs into a series of iterative or re-
cursive steps, where the solution at each step is computed once and
stored for future use (Bellman, 1954).

10.5.2 Applying the CRF Using the Viterbi Algorithm
Once the CRF has been trained, i.e., we have trained parameters for
the RNN that produces the R scores and meaningful transition scores
in T, we can apply it to arbitrary sequences to find the path y with the
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maximum score s(y) in the corresponding lattice. The algorithm that
finds this path efficiently is another dynamic programming algorithm
known as the Viterbi algorithm, after its author (Viterbi, 2006). It is
very similar to the forward algorithm we discussed before, with the key
difference being that in each node we store the score of the best path that
ends in that node (rather than the logSumExp of all path scores ending
there as in the forward algorithm). In particular, viterbi[i, j] stores the
score of the best path ending on the ith label for the jth word in the
sequence. The additional variable backPointer stores the index in the
previous lattice column that produced the last component in the best
path for this node. For example, the back pointer for the node man with
the part-of-speech tag VBD in Figure 10.7 points back to the part-of-
speech tag NN for old.

The value bestPathScore stores the overall score for the best path
in the lattice. bestPathPointer points back from the stop node to the
node in the last lattice column that is part of the best path found. Thus,
traversing these pointers back from bestPathPointer all the way to start

recovers the sequence of nodes that form the best path.
The Viterbi algorithm has the same runtime cost as the forward algo-

rithm: nk2. Thus, the combination of the forward and Viterbi algorithms
provide an efficient framework to train and apply a CRF that is linear in
the number of words in the sequence. In several NLP applications (see
Chapter 16) using a CRF layer on top of an RNN yields considerable
improvements in performance. For example, the authors have observed
an increase in 4 F1 percentage points in named entity recognition per-
formance when a bidirectional LSTM is coupled with a CRF over the
standalone bidirectional LSTM.

10.6 Drawbacks of Recurrent Neural Networks
As we will detail in Chapter 16, sequence models are fundamental for
many applications that rely on sequences such as language models, part-
of-speech tagging, named entity recognition, or syntactic parsing. How-
ever, as the tweet at the beginning of this chapter hints, many NLP
applications, e.g., text classification or question answering, do not need
sequence modeling (despite one’s linguistic intuitions). For such appli-
cations, simpler bag-of-words techniques perform just as well or better.

Further, RNNs are hard to parallelize. They must process the input
words sequentially because each RNN cell depends on the output of the
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previous cell. In contrast, other newer architectures such as transformer
networks (see Chapter 12) are designed to facilitate parallel processing,
which makes them considerably faster when executed on graphics pro-
cessing units (GPU), which have hardware support for parallel tensor
operations.

Lastly, despite the fact that RNN architectures such as LSTMs are
designed to capture arbitrarily long sequences, in practice they become
“fuzzy far away”, i.e., they tend to forget about word order for long-range
contexts such as beyond 50 words (Khandelwal et al., 2018).

10.7 Historical Background

Recurrent neural networks were invented by Rumelhart et al. (1986).
Interestingly, Rumelhart was yet another psychologist who made a fun-
damental contribution to the field of deep learning (see the history of the
perceptron in Chapter 2). As we discussed in this chapter, these orig-
inal RNNs suffered of the vanishing gradient problem. This issue was
addressed by long short-term memory networks, who were invented by
Hochreiter and Schmidhuber (1997) approximately 10 years later. Un-
til the late 2010s when the transformer networks were introduced (see
Chapter 12), LSTMs were ubiquitous in the field of natural language pro-
cessing. They were used to implemented virtually all applications where
modeling sequences is important, from automated speech recognition to
machine translation.

Conditional random fields were invented by Lafferty et al. (2001), but
they were initially applied to a non-neural sequence modeling algorithm.
The adaptation to recurrent neural networks that we discussed in this
chapter was proposed by Lample et al. (2016). Conditional random fields
incorporate other, older algorithms. For example, the Viterbi algorithm,
which is used by CRFs for inference, was discovered by Andrew Viterbi
in 1967 (Viterbi, 2006).8 The forward algorithm, which is used during
the training of CRFs, was initially proposed in the context of training
hidden Markov models, a different sequence modeling framework (Baum
and Petrie, 1966; Baum and Eagon, 1967).

8 Kruskal (1983) showed that, despite the name, the Viterbi algorithm actually
had a “remarkable history of multiple independent discover[ies].”
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10.8 References and Further Readings
Christopher Olah wrote a great visual description of long short-term
memory networks in his blog (Olah, 2015).

More recent variants of LSTMs offer the same advantages and similar
performance as the original, while reducing the number of parameters
(Cho et al., 2014).

Khandelwal et al. (2018) highlighted some drawbacks of LSTMs, which
partially paved the way for the introduction of attention-based architec-
tures such as transformer networks (see Chapter 12).

10.9 Summary
This chapter introduced methods that explicitly capture word-order in-
formation. In particular, we discussed several types of recurrent neu-
ral networks, including stacked (or deep) RNNs, bidirectional RNNs,
and long short-term memory networks. We showed that RNNs can be
used in the three different ways: (a) as acceptors, where a classification
layer is added on top of the last network cell, (b) as transducers, which
add a classification layer for each cell, and (c) as encoder-decoders, in
which case two RNNs are combined: an encoder that codes an input
sequence into a single vector, and a decoder that generates one element
at a time from an output sequence. Lastly, we introduced conditional
random fields, which extend transducer RNNs with an extra layer that
explicitly models transition probabilities between two cells. This allows
us to estimate (and optimize during training) the probability of an entire
sequence of labels rather than probabilities of individual labels.
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Implementing Part-of-speech Tagging Using

Recurrent Neural Networks

The previous chapter was our first exposure to recurrent neural net-
works, which included intuitions for why they are useful for natural
language processing, various architectures, and training algorithms. In
this chapter we will put them to use, to implement a common sequence
modeling task.

11.1 Part-of-speech Tagging
The task we will use as an example for this chapter is part-of-speech
(POS) tagging, an NLP application that, as we discussed in the previous
chapter, benefits from word order. Please see Chapter 16 for a more
thorough discussion of POS tagging. The entire code presented in this
chapter is available in the chap11_pos_tagging Jupyter notebook.

To take a break from NLP applications for English, in this chapter
we use the AnCora corpus (Taulé et al., 2008), which primarily con-
sists of newspaper texts in Spanish and Catalan with different linguistic
annotations. In this chapter we work with the Spanish portion of the
corpus, and the annotations for Universal POS tags (see Chapter 16 for
a description of these tags).

The Spanish portion of the corpus is divided into a training set with
14,305 sentences, a development set with 1,654 sentences, and a test
set with 1,721 sentences. The data is distributed in the CoNLL-U for-
mat. In this format, all sentences in a dataset are stored in the same
file, separated by a blank line. Each individual token in a sentence is
represented in a line, which contains 10 annotation fields separated by
tabs: ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL,
DEPS, and MISC. A comprehensive explanation of this format and the

183
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meaning of the different fields is beyond the goal of this chapter; how-
ever, the curious reader can find one at the CoNLL-U website.1 Here,
we are only concerned with the fields FORM (the raw word), and UPOS
(the Universal part-of-speech tag).

As in previous chapters, we use pandas to preprocess the data. For
parsing the CoNLL-U files, we rely on the conllu Python module.2
We implement a function called read_tags that reads the CoNLL-U
file corresponding to a dataset and returns a pandas dataframe that
combines all tokens in a sentence into a single row with two columns, one
for the words, and one for the POS tags in the corresponding sentence:

[2]: from conllu import parse_incr

def read_tags(filename):
data = {'words': [], 'tags': []}
with open(filename) as f:

for sent in parse_incr(f):
words = [tok['form'] for tok in sent]
tags = [tok['upos'] for tok in sent]
data['words'].append(words)
data['tags'].append(tags)

return pd.DataFrame(data)

train_df = read_tags('data/UD_Spanish-AnCora/
↪→es_ancora-ud-train.conllup')
train_df

1 https://universaldependencies.org/format.html
2 https://github.com/EmilStenstrom/conllu/

https://universaldependencies.org/format.html
https://github.com/EmilStenstrom/conllu/
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words tags

0 [El, presidente, de, el, órgano, regulador, de... [DET, NOUN, ADP, DET, NOUN, ADJ, ADP, DET, PRO...

1 [Sobre, la, oferta, de, interconexión, con, Te... [ADP, DET, NOUN, ADP, NOUN, ADP, PROPN, ADP, D...

2 [Afirmó, que, sigue, el, criterio, europeo, y,... [VERB, SCONJ, VERB, DET, NOUN, ADJ, CCONJ, SCO...

3 [La, inversión, en, investigación, básica, es,... [DET, NOUN, ADP, NOUN, ADJ, AUX, DET, NOUN, AD...

4 [Durante, la, presentación, de, el, libro, ", ... [ADP, DET, NOUN, ADP, DET, NOUN, PUNCT, DET, P...

... ... ...

14300 [Y, todas, las, miradas, convergen, en, la, lu... [CCONJ, DET, DET, NOUN, VERB, ADP, DET, NOUN, ...

14301 [Conviene, que, ahora, ,, en, plena, apoteosis... [VERB, SCONJ, ADV, PUNCT, ADP, ADJ, NOUN, ADP,...

14302 [Cambiar, las, formas, parece, de, rigor, ,, p... [VERB, DET, NOUN, VERB, ADP, NOUN, PUNCT, CCON...

14303 [Carlos, y, Fayna, se, enzarzan, en, una, bron... [PROPN, CCONJ, PROPN, PRON, VERB, ADP, DET, NO...

14304 [Él, llega, a, tirar, la, sobre, la, cama, y, ... [PRON, VERB, ADP, VERB, PRON, ADP, DET, NOUN, ...

14305 rows × 2 columns

In order to implement our POS tagging application, we need word
embeddings that have been pretrained for Spanish. Here we use the
publicly-available GloVe embeddings trained on the Spanish Billion Word
Corpus3 by the Departamento de Ciencias de la Computación of Univer-
sidad de Chile.4 In contrast to the GloVe embeddings used in Chapter 9,
these do include a header that stores meta data about the embeddings
(i.e., size of the vocabulary and the dimension of the embedding vectors),
so in this case we do not use the no_header=True argument:

[4]: from gensim.models import KeyedVectors
glove = KeyedVectors.load_word2vec_format('glove-sbwc.

↪→i25.vec')
glove.vectors.shape

[4]: (855380, 300)

Another difference between these GloVe embeddings and the ones we
used in Chapter 9 is that these already include an embedding for un-
known words. Therefore, there is no need to introduce our own.

[5]: # these embeddings already include <unk>
unk_tok = '<unk>'
unk_id = glove.key_to_index[unk_tok]
unk_tok, unk_id

3 https://crscardellino.ar/SBWCE/
4 https://github.com/dccuchile/spanish-word-embeddings#

glove-embeddings-from-sbwc

https://crscardellino.ar/SBWCE/
https://github.com/dccuchile/spanish-word-embeddings#glove-embeddings-from-sbwc
https://github.com/dccuchile/spanish-word-embeddings#glove-embeddings-from-sbwc
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[5]: ('<unk>', 855379)

However, we do need to include a new embedding for padding, which
we will use later to guarantee that all sentences in the same mini-batch
have the same length. We add a vector of zeros for the padding token in
the same way as before:

[6]: # add padding embedding
pad_tok = '<pad>'
pad_emb = np.zeros(300)
glove.add_vector(pad_tok, pad_emb)
pad_tok_id = glove.key_to_index[pad_tok]
pad_tok, pad_tok_id

[6]: ('<pad>', 855380)

Next, we need to preprocess our tokens to match the vocabulary of
the embeddings. In particular, these embeddings were trained on words
that were lowercased and on sequences of digits that were replaced with
a single 0. We will apply the same modifications to our tokens:

[7]: def preprocess(words):
result = []
for w in words:

w = w.lower()
if w.isdecimal():

w = '0'
result.append(w)

return result

train_df['words'] = train_df['words'].
↪→progress_map(preprocess)
train_df

(From now on we will omit the pandas tables for readability, but, as
usual, the corresponding Jupyter notebook contains all necessary infor-
mation.)

Next, we add a new column to the dataframe that stores the word
ids corresponding to the embedding vocabulary. Note that at this point
we are not padding the sequences of word ids. We will address padding
later.
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[8]: def get_ids(tokens, key_to_index, unk_id=None):
return [key_to_index.get(tok, unk_id) for tok in␣

↪→tokens]

def get_word_ids(tokens):
return get_ids(tokens, glove.key_to_index, unk_id)

# add new column to the dataframe
train_df['word ids'] = train_df['words'].

↪→progress_map(get_word_ids)
train_df

We also need to generate the ids for the POS tags. To this end, we first
need to construct a vocabulary of POS tags. Once again, we generate a
list of tags using explode(), which linearizes our sequence of sequence
of tags, and remove repeated tags using unique(). We also add a special
tag for the padding token:

[9]: pad_tag = '<pad>'
index_to_tag = train_df['tags'].explode().unique().

↪→tolist()
index_to_tag += [pad_tag]
tag_to_index = {t:i for i,t in enumerate(index_to_tag)}
pad_tag_id = tag_to_index[pad_tag]
pad_tag, pad_tag_id

[9]: ('<pad>', 17)

We now use this POS tag vocabulary to construct a new dataframe
column that stores the POS tag ids:

[11]: def get_tag_ids(tags):
return get_ids(tags, tag_to_index)

train_df['tag ids'] = train_df['tags'].
↪→progress_map(get_tag_ids)
train_df

The implementation of the Dataset class that stores our POS dataset
is trivial: we simply return the lists of word and tag ids, converted to
PyTorch tensors.
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[13]: from torch.utils.data import Dataset

class MyDataset(Dataset):
def __init__(self, x, y):

self.x = x
self.y = y

def __len__(self):
return len(self.y)

def __getitem__(self, index):
x = torch.tensor(self.x[index])
y = torch.tensor(self.y[index])
return x, y

Now it’s time to handle padding. This time we will use some features
of PyTorch that we have not seen before. The DataLoader object can
receive an optional argument, collate_fn, which expects a function
that can be used to form a mini-batch. We will implement this func-
tion using PyTorch’s torch.nn.utils.rnn.pad_sequence() function,
which, unsurprisingly, pads a group of tensors. We will take advantage
of this function to pad the tensors while forming the mini-batch itself.
The advantage of this strategy is that, rather than needing to pad all the
examples to be the same length as the largest sentence in the corpus, we
will instead pad them to the same length as the largest sentence in the
minibatch. The latter strategy reduces the amount of padding necessary,
which should yield more efficient code.

[14]: from torch.nn.utils.rnn import pad_sequence

def collate_fn(batch):
# separate xs and ys
xs, ys = zip(*batch)
# get lengths
lengths = [len(x) for x in xs]
# pad sequences
x_padded = pad_sequence(

xs,
batch_first=True,
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padding_value=pad_tok_id)
y_padded = pad_sequence(

ys,
batch_first=True,
padding_value=pad_tag_id)

# return padded
return x_padded, y_padded, lengths

The collate_fn() function takes a single argument, batch, which is
a list of tuples. Each tuple has two elements: the list of word ids and
the list of tag ids corresponding to a single example. We first unzip this
list of tuples into two lists; the first list has all the word ids, and the
second has the tag ids. An explanation of how zip(*batch) works is
provided in Appendix A. Next, we compute the lengths of each of the
examples in the batch, which we will use later to inform the recurrent
neural network where padding starts for each example. We then use the
pad_sequence() function to add padding. This function will find the
longest sequence in the batch and pad all examples accordingly using the
provided padding value. This method is designed to work with PyTorch’s
recurrent neural networks, which by default assume the batch index is
in the second dimension. However, we will be organizing our tensors
such that the batch index is always in the first dimension, which we
feel to be more intuitive. For this reason, we also need to provide the
batch_first=True argument to pad_sequence. Finally, we return the
padded data, as well as the original lengths of the examples.

Next, we implement our POS tagging model class. The model consists
of: (a) an embedding layer for our Spanish pretrained embeddings; (b)
an LSTM that can be configured to be uni- or bi-directional, with a
configurable number of layers; and (c) a linear layer on top of each
hidden state, which is used to predict the scores for each of the POS
tags for the corresponding token.

The forward() method receives the padded minibatch and the list of
lengths for the (unpadded) examples in this mini-batch. The first step
in the function is to retrieve the embeddings for all words referenced in
this mini-batch. We then apply dropout over these embedding vectors.
Next, before passing the data to the LSTM, we pack the padded data.
Note that the PyTorch PackedSequence5 class, which is the output of
the pack_padded_sequence() function, stores a batch of sequences that
5 https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.

PackedSequence.html

https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.PackedSequence.html
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.PackedSequence.html
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had different lengths before padding. One important advantage of using
PackedSequence is that its internal data structure removes the padding
tokens (which is why we had to keep track of the example lengths before
padding in x_lengths), and, thus, the recurrent neural network will not
back-propagate over the padded elements.6

Once we have a PackedSequence, we pass it to the LSTM. Since the
output of the LSTM is also packed, we then unpack it using pad_packed_sequence().
Next we apply dropout to this unpacked LSTM output. Finally, we pass
this to the linear layer to predict the tag scores for the tokens.

[15]: from torch import nn
from torch.nn.utils.rnn import pack_padded_sequence,␣

↪→pad_packed_sequence

class MyModel(nn.Module):
def __init__(self, vectors, hidden_size, num_layers,␣

↪→bidirectional, dropout, output_size):
super().__init__()
# ensure vectors is a tensor
if not torch.is_tensor(vectors):

vectors = torch.tensor(vectors)
# init embedding layer
self.embedding = nn.Embedding.

↪→from_pretrained(embeddings=vectors)
# init lstm
self.lstm = nn.LSTM(

input_size=vectors.shape[1],
hidden_size=hidden_size,
num_layers=num_layers,
bidirectional=bidirectional,
dropout=dropout,
batch_first=True)

# init dropout
self.dropout = nn.Dropout(dropout)
# init classifier
self.classifier = nn.Linear(

6 The astute reader might ask at this point, “Why did we pad the mini-batch
examples in the first place, if we are removing the padding later?” The padding
is needed because this allows us to store the mini-batch as a single
three-dimensional tensor.
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in_features=hidden_size * 2 if bidirectional␣
↪→else hidden_size,

out_features=output_size)

def forward(self, x_padded, x_lengths):
# get embeddings
output = self.embedding(x_padded)
output = self.dropout(output)
# pack data before lstm
packed = pack_padded_sequence(output, x_lengths,␣

↪→batch_first=True, enforce_sorted=False)
packed, _ = self.lstm(packed)
# unpack data before rest of model
output, _ = pad_packed_sequence(packed,␣

↪→batch_first=True)
output = self.dropout(output)
output = self.classifier(output)
return output

Despite the small number of lines of code, the code of the forward()
method, which switches between embedding vectors, padded tensors,
and packed sequences, is not trivial. To clarify it, let us walk through an
example. Imagine that the input to the forward() method is a batch,
x_padded, with shape (10, 20), corresponding to 10 examples, each with
20 word ids (some of which are padding). Then we retrieve the embed-
dings. Assuming our embeddings are of 300 dimensions, the new tensor
will have a shape of (10, 20, 300), corresponding to 10 examples, each
with 20 embeddings, each with 300 dimensions. After dropout the shape
hasn’t changed, but some of the elements have been zeroed out. After
unpacking the output of the LSTM, we will have a tensor of shape (10,
20, hidden_size), where hidden_size is the size of the LSTM hidden
state (hidden_size is a hyper parameter we will set later on). After
passing this tensor to the linear layer, we will obtain a tensor of shape
(10, 20, tag_vocab_size), where tag_vocab_size is the number of POS
tags in our vocabulary. Thus, for each token in each example, we will
have a distribution of POS tag scores. For each token, the assigned POS
tag will be the one corresponding to the highest score.

We next initialize all the hyper parameters and all the required com-
ponents:
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[16]: from torch import optim
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score

# hyperparameters
lr = 1e-3
weight_decay = 1e-5
batch_size = 100
shuffle = True
n_epochs = 10
vectors = glove.vectors
hidden_size = 100
num_layers = 2
bidirectional = True
dropout = 0.1
output_size = len(index_to_tag)

# initialize the model, loss function, optimizer, and␣
↪→data-loader
model = MyModel(vectors, hidden_size, num_layers,␣

↪→bidirectional, dropout, output_size).to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr,␣

↪→weight_decay=weight_decay)
train_ds = MyDataset(train_df['word ids'], train_df['tag␣

↪→ids'])
train_dl = DataLoader(train_ds, batch_size=batch_size,␣

↪→shuffle=shuffle, collate_fn=collate_fn)
dev_ds = MyDataset(dev_df['word ids'], dev_df['tag ids'])
dev_dl = DataLoader(dev_ds, batch_size=batch_size,␣

↪→shuffle=shuffle, collate_fn=collate_fn)

train_loss, train_acc = [], []
dev_loss, dev_acc = [], []

The training procedure is very similar to the one implemented in
Chapter 7. One notable difference is that the output of this model has
three dimensions instead of two: number of examples, number of to-
kens, and number of POS tag scores. Thus, we have to reshape the
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output to pass it to the loss function. Additionally, we need to discard
the padding before computing the loss. We reshape the gold tag ids
using the torch.flatten() function, to transform the 2-dimensional
tensor of shape (n_examples, n_tokens) to a 1-dimensional tensor with
n_examples * n_tokens elements. The predictions are reshaped using
the view(-1, output_size) method. By passing two arguments we are
stipulating that we want two dimensions. The second dimension will be
of size output_size. The -1 indicates that the first dimension should be
inferred from the size of the tensor. This means that for a tensor of shape
(n_examples, n_tokens, output_size) we will get a tensor of shape
(n_examples * n_tokens, output_size). Then, we use a Boolean mask
to discard the elements corresponding to the padding. This way, the loss
function will consider each actual word individually, as if the whole batch
was just one big sentence. Note that treating a mini-batch as a single
virtual sentence does affect the evaluation results.

[17]: # train the model
for epoch in range(n_epochs):

losses, acc = [], []
model.train()
for x_padded, y_padded, lengths in tqdm(train_dl,␣

↪→desc=f'epoch {epoch+1} (train)'):
# clear gradients
model.zero_grad()
# send batch to right device
x_padded = x_padded.to(device)
y_padded = y_padded.to(device)
# predict label scores
y_pred = model(x_padded, lengths)
# reshape tensors for loss function
y_true = torch.flatten(y_padded)
y_pred = y_pred.view(-1, output_size)
# discard padding
mask = y_true != pad_tag_id
y_true = y_true[mask]
y_pred = y_pred[mask]
# compute loss
loss = loss_func(y_pred, y_true)
# accumulate for plotting
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gold = y_true.detach().cpu().numpy()
pred = np.argmax(y_pred.detach().cpu().numpy(),␣

↪→axis=1)
losses.append(loss.detach().cpu().item())
acc.append(accuracy_score(gold, pred))
# backpropagate
loss.backward()
# optimize model parameters
optimizer.step()

train_loss.append(np.mean(losses))
train_acc.append(np.mean(acc))

model.eval()
with torch.no_grad():

losses, acc = [], []
for x_padded, y_padded, lengths in tqdm(dev_dl,␣

↪→desc=f'epoch {epoch+1} (dev)'):
x_padded = x_padded.to(device)
y_padded = y_padded.to(device)
y_pred = model(x_padded, lengths)
y_true = torch.flatten(y_padded)
y_pred = y_pred.view(-1, output_size)
mask = y_true != pad_tag_id
y_true = y_true[mask]
y_pred = y_pred[mask]
loss = loss_func(y_pred, y_true)
gold = y_true.cpu().numpy()
pred = np.argmax(y_pred.cpu().numpy(),␣

↪→axis=1)
losses.append(loss.cpu().item())
acc.append(accuracy_score(gold, pred))

dev_loss.append(np.mean(losses))
dev_acc.append(np.mean(acc))

Lastly, we evaluate the performance of our POS tagger on the test set,
similarly to how we have done it before:

[21]: from sklearn.metrics import classification_report
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model.eval()

test_ds = MyDataset(test_df['word ids'], test_df['tag␣
↪→ids'])
test_dl = DataLoader(test_ds, batch_size=batch_size,␣

↪→shuffle=shuffle, collate_fn=collate_fn)

all_y_true = []
all_y_pred = []

with torch.no_grad():
for x_padded, y_padded, lengths in tqdm(test_dl):

x_padded = x_padded.to(device)
y_pred = model(x_padded, lengths)
y_true = torch.flatten(y_padded)
y_pred = y_pred.view(-1, output_size)
mask = y_true != pad_tag_id
y_true = y_true[mask]
y_pred = torch.argmax(y_pred[mask], dim=1)
all_y_true.append(y_true.cpu().numpy())
all_y_pred.append(y_pred.cpu().numpy())

y_true = np.concatenate(all_y_true)
y_pred = np.concatenate(all_y_pred)
target_names = index_to_tag[:-2]
print(classification_report(y_true, y_pred,␣

↪→target_names=target_names))

precision recall f1-score support

DET 0.99 1.00 0.99 8040
NOUN 0.95 0.96 0.95 9533
ADP 1.00 1.00 1.00 8332
ADJ 0.92 0.93 0.92 3468

PROPN 0.91 0.89 0.90 4101
PRON 0.97 0.95 0.96 2484
VERB 0.98 0.98 0.98 4544

SCONJ 0.93 0.96 0.95 1210
PUNCT 0.98 0.99 0.98 6314
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AUX 0.97 0.99 0.98 1396
CCONJ 1.00 1.00 1.00 1439
ADV 0.97 0.96 0.97 1710
NUM 0.97 0.85 0.91 958

PART 0.79 0.61 0.69 18
SYM 0.70 0.38 0.49 37

INTJ 0.80 0.50 0.62 16

accuracy 0.97 53600
macro avg 0.93 0.87 0.89 53600

weighted avg 0.97 0.97 0.97 53600

The results indicate that our POS tagger obtains an overall accuracy
of 97%, which is in line with state-of-the-art approaches! This is encour-
aging considering that our approach does not include the CRF layer we
discussed in Chapter 10. We challenge the reader to add this layer,7
and experiment with this architecture for other sequence tasks such as
named entity recognition.

11.2 Summary
In this chapter we have implemented a Spanish part-of-speech tagger
using a bidirectional LSTM and a set of pretrained, static word em-
beddings. Through this process, we have also introduced several new
PyTorch features such as the pad_sequence, pack_padded_sequence,
and pad_packed_sequence functions, which allow us to work more effi-
ciently with variable length sequences for recurrent neural networks.

7 See, for example, the LSTM-CRF implementation from the PyTorch tutorial:
https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html

https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html
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Contextualized Embeddings and Transformer

Networks

As mentioned in Chapter 8, the distributional similarity algorithms dis-
cussed there conflate all senses of a word into a single numerical repre-
sentation (or embedding). For example, the word bank receives a single
representation, regardless of its financial (e.g., as in the bank gives out
loans) or geological (e.g., bank of the river) sense. This chapter intro-
duces a solution for this limitation, in the form of a new neural archi-
tecture called transformer networks (TNs) (Vaswani et al., 2017; Devlin
et al., 2018), which learns contextualized embeddings of words, which,
as the name indicates, change depending on the context in which the
words appear. That is, the word bank receives a different numerical rep-
resentation for each of its instances in the two texts above because the
contexts in which they occur are different.

An important note: in this chapter we discuss only the first half of
the transformer network architecture, the encoder, which generates con-
textualized embeddings for an input text. Reusing the terminology from
Chapter 10, this enables two ways to use a transformer network: as a
transducer, where we build applications that rely on the contextualized
embeddings of each word in an input sequence (e.g., part-of-speech tag-
ging), or as an acceptor, in which case we build applications over a single
contextualized representation of the entire input text (e.g., text classi-
fication). We will discuss the second half of the transformer network
architecture, the decoder, which generates one element at a time from
an output sequence, in Chapter 14.

While transformer networks have a relatively complex structure, the
intuition behind them is simple: each word receives a contextualized
embedding that is a weighted average of some context-independent in-
put embeddings (i.e., embeddings that are conceptually similar to the

197
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Figure 12.1 Intuition behind transformer networks: each output embed-
ding is a weighted average of all input embeddings in the context.

word2vec embeddings from the previous chapter).1 Figure 12.1 visual-
izes this intuition. As the figure shows, the contextualized embedding
of the word bank combines all four of the input embeddings. Because
this includes the input embedding for river, the resulting contextualized
embedding of bank will lean towards a semantic representation closer to
geology than finance. As the figure indicates, the same process applies
to all other words in the text. Importantly, the weights used for the
weighted averages that generate the output embeddings are specific to
each word. This allows transformer networks to generate distinct output
embeddings for the different words in the text to be processed.

In reality, transformer networks consist of multiple layers, where each
layer implements a weighted average as discussed above. This stacked ar-
chitecture is summarized in Figure 12.2. As the figure shows, the output
embeddings for layer i become the input embeddings for layer i+1. The
number of layers typically ranges between 2 and 24. Relying on multiple
layers allows transformer networks to learn more complex functions for
assembling the eventual output embeddings, which has been empirically
shown to yield more meaningful representations.

In the next section we will discuss the architecture of the individual
TN layer, which is the key transformer networks building block. Then,
we will discuss the tokenization strategy used by transformer networks,
which is different from what we discussed so far in the book. We will con-
clude the technical description of transformer networks in this chapter
with a discussion of their training procedure.

1 Or, rather, each word receives a weighted average of projections of input
embeddings into a new feature space. We will deal with these details later in this
chapter.
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Figure 12.2 A transformer network consists of multiple layers, where each
layer performs a weighted average of its input embeddings.

12.1 Architecture of a Transformer Layer
Figure 12.3 shows the internal architecture of an individual TN layer.
As shown, each layer implements a sequence of five operations. The first
operation adds positional information to the input embedding of each
word in the input text. That is, at this stage, the embedding of each word
changes depending on its position in the input text. For example, each
occurrence of the word shipping in the tongue twister A ship shipping
ship shipping shipping ships will receive a different embedding because
they occur at different positions in the text.

The second operation implements the key functionality of the TN
layer summarized in Figure 12.1, i.e., generating embeddings that are a
weighted average of the embeddings produced by the previous operation.
In deep learning parlance this weighted average is called “self attention.”2
The term “attention” is used to indicate that this component identifies
the important parts of the data and “pays attention” to them more
2 This terminology is inspired from cognitive science and the actual cognitive

attention. To the knowledge of the authors, it has not been proven that this
connection between the weighted average performed by transformer networks (or
other deep learning architectures) and the cognitive attention process is justified.
However, because “attention” is widely used in the deep learning literature, we
will continue to use this terminology throughout the book.
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Figure 12.3 Architecture of an individual transformer layer.

(through higher weights in the weighted average). “Self” indicates that
this component operates over its own input text (we will see other types
of attention that operate over other texts in the following chapters).

The next three operations are not that important conceptually, but
they have been shown to have a significant contribution empirically.
For example, the “Add and normalize” components sum up input and
output embeddings from the previous component in the pipeline (e.g.,
the input embeddings to the self attention layer and the corresponding
output embeddings computed through the weighted average), and nor-
malize the results to avoid values that might be too large, which may
negatively impact gradient descent. The feed forward components en-
code each received numerical representation into a new vector, which
allows the TN layer to learn more complex functions.

We detail all these operations next.

12.1.1 Positional Embeddings
Our astute reader has likely observed that the weighted average sum-
marized in Figure 12.1 suggests a “bag-of-words” model. That is, trans-
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former networks seem to produce contextualized embeddings that are
independent of the order of the words in the input text. This is clearly
less than ideal. For example, in the text Bank of America financed a re-
pair of the river bank the machine should be able to figure out that the
first instance of bank refers to a financial institution because it is closer to
the word financed and farther away from the word river. Modeling such
proximity information requires keeping track of positional information,
i.e., where words occur in the input texts.

Before transformer networks, neural approaches typically modeled po-
sitional information as a separate numerical representation. That is, each
value i in a list of possible word positions in a text (say, 1 to 100), is
associated with a numerical representation pi, which is initialized with
random values. Then, the input embedding of word wi becomes a con-
catenation of two vectors: xi = [wi; pi], where wi is a regular word
embedding, e.g., coming from word2vec. The training process of a neu-
ral network on top of such embeddings back-propagates gradients all
the way back to these vectors. Thus, during training, the network also
learns numerical representations for word positions through the p vec-
tors. The advantage of this strategy to model positional information is
flexibility: the network learns numerical representations for position val-
ues that are customized for the task at hand. The disadvantages of this
approach are some additional cost caused by the extra back-propagation
operations, and the inability to handle position values not seen in train-
ing. For example, assume that all training sentences for some NLP task
contain fewer than 100 words. The network trained on this data will not
know what numerical representations to assign to words that occur at
positions larger than 100 during evaluation.

Transformer networks address these drawbacks by using hard-coded
functions to generate numerical representations of word positions. That
is, for a word at position i in the input text, transformer networks gener-
ate a vector pi, where the value at position j in this vector is computed
using a function that depends on both i and j: f(i, j). The actual func-
tion f used is not that important;3 suffice to say that the resulting
vector pi encodes positional information because it is unique for each
word position i. Then, the input embedding xi for word wi becomes:
xi = wi + pi.4 This approach mitigates the two disadvantages men-

3 We refer the reader to the transformer networks paper for details on this
function (Vaswani et al., 2017).

4 Note that transformer networks sum the wi and pi vectors to generate xi,
whereas the approach previously discussed concatenates them. The motivation



202 Contextualized Embeddings and Transformer Networks

tioned before: the function f is hard-coded, and, thus, there is no need
to learn it. f generates different values for any word position i, and,
thus, works for previously unseen word positions. The transformer net-
works creators mention that the proposed method performs similarly in
practice as the more expensive and less flexible strategy discussed in the
previous paragraph.

12.1.2 Self Attention
As indicated earlier, this self attention layer is the key building block in
transformer networks. For each word wi, this layer produces an output
embedding, zi, that is a combination of all input embeddings x (i.e., the
embeddings produced by the previous component that infuses positional
information), for all the words in the input text.

To generate the output embeddings zi, the self attention layer uses
three vectors for each word wi: a query vector qi, a key vector ki, and a
value vector vi. These vectors are nothing magical: they are just arrays
of real values, e.g., a qi vector might look like (0.58,−045, 0.34, . . . ).
We will discuss later in this chapter how the values in these vectors are
learned; for now let us assume that these three vectors exist for every
word in the input text, and they are populated with some meaningful
values.

At a high level, the query and key vectors are used to generate unique
attention weights for each pair of words wi and wj . The intuition behind
this attention mechanism can be explained with a real-world analogy:
suppose you are at bakery and are interested in buying a bagel. Here
the query is “bagel,” and the keys are the names of all products in the
bakery, e.g., “bread,” or “croissant.” The value of each product is its
price. Our goal in this shopping experience is to pay more attention
to the prices (or values) of the products (keys) that are closest to our
interest (query).5 In our context, the dot product qi · kj indicates how
important word wj is for the output embedding of word wi. The value
vector vi is a projection (or transformation) of the input vector xi into a
new feature space. Each output embedding zi will be a weighted average
of these value vectors.6

behind this design decision is that the summation allows back-propagation to
adjust both wi and pi vectors, similarly to the concatenation approach, but
without increasing the dimension of the xi vector.

5 We thank Sandeep Suntwal for this analogy, which was influenced by the
discussion in (Kiat, 2021).

6 Thus, Figure 12.1, oversimplifies the self attention component when it suggests



12.1 Architecture of a Transformer Layer 203

Table 12.1 A self-attention walkthrough example for computing the
contextual embedding z1 for the word bank in the text bank of the river.

1 (a) Compute all the q1 · ki dot products for the four words in the text:
a11 = q1 · k1 = 40
a12 = q1 · k2 = 16
a13 = q1 · k3 = 8
a14 = q1 · k4 = 32

1 (b) Divide all the above values by
√

|k1| = 8:
a11 = 5
a12 = 2
a13 = 1
a14 = 4

2 Apply softmax on the above 4 values:
a11 = 0.70
a12 = 0.03
a13 = 0.01
a14 = 0.26

3 Compute the contextualized embedding z1 for river,
as a weighted average of the value vectors:

z1 = 0.70v1 + 0.03v2 + 0.01v3 + 0.26v4

To formalize a bit more, given the query, key, and value vectors for all
words in the input text (i.e., qi, ki, vi for word wi), the self attention
algorithm operates as follows:

(i) For each pair of words, wi and wj , compute the attention weight aij
using the qi and kj vectors. In particular:

(a) Initialize the attention weights aij with the product of the corre-
sponding query and key vectors: aij = qi · kj .

(b) Divide the above values by the square root of the length of the key
vector: aij = aij/

√
|k1| (all ki vectors have the same size, so we

arbitrarily use k1 here).
(ii) For each word wi, apply softmax on all its attention weights, aij .
(iii) For each word wi, multiply the above attention weights with the

corresponding value vectors, for all words wj . Then sum up all these
weighted vectors to produce the output vector for wi: zi =

∑
j aij vj .

that the weighted average operates over the input vectors. We hope the reader
pardons this temporary approximation, which was introduced for the sake of
pedagogy.
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Table 12.1 shows an (artificial) walkthrough example for this algo-
rithm. Step 1(a) shows the result of the q1 · kj multiplications, i.e., for
all combinations between the word bank and the words in the text (bank
included). These attention weight values indicate that the word bank
pays attention to itself (i.e., a11 is large) and the word river (a14 is also
large), which disambiguates bank in the current context, and less atten-
tion to the more ambiguous words in the context (of and the). The next
step, 1(b), divides these values by the square root of the key vector. This
heuristic is necessary to mitigate the exploding gradient phenomenon.
This phenomenon is the opposite of the vanishing gradient phenomenon
that we discussed in Chapter 5. That is, large parameter values in the
network such as these attention weights yield gradient values that are
consequently also large during back-propagation, which cause unstable
learning due to too much “jumping around” in the parameter space, or
even overflow in parameter values.

Step 2 applies a softmax layer on the resulting weights, which converts
them into a probability distribution. This is necessary to: (a) produce a
meaningful weighted average in the next step below, and (b) to further
control for large weight values. Later on in this section, we will see an-
other component that aims to control for unreasonably large parameter
values in TN. Lastly, step 3 computes the output embedding, z1, as a
weighted average of the v vectors for all the words in the context multi-
plied by their corresponding attention weights generated in the previous
step.

The above walkthrough example shows that, given query, key, and
value vectors for words in the input text, it is relatively trivial to produce
contextualized output embeddings. But where do the query, key, and
value vectors come from? All these vectors are generated by projecting
the input embeddings x into a new feature space. More formally, each
self attention block contains three matrices, WQ, WK, and WV, where
WQ and WK have dimension |x| × |k|, and WV has dimension |x| × |v|.7
Each of the qi, ki, and vi vectors is then computed as:

(i) qi = xi × WQ,
(ii) ki = xi × WK, and
(iii) vi = xi × WV.

Thus, the parameters in a self attention layer are the three matrices,
7 Note that the q and k vectors must have the same dimension because of the dot

product in the computation of the attention weights.
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WQ, WK, and WV. A typical configuration for the self attention layer
has |x| = 512, and |k| = |v| = 64.

12.1.3 Multiple Heads
Transformer networks further expand the above self attention layer by
repeating it multiple times. A typical configuration includes eight differ-
ent instances of the above algorithm. Each of these instances is called a
“head.” To make sure that the heads capture different information, each
head receives different copies of the WQ, WK, and WV matrices, which
are all initialized with different values. This allows each layer to produce
output embeddings z that operate in different feature spaces, and, hope-
fully, capture complementary information. Then, the actual embedding
zi for the word at position i is computed as the product between the
concatenated embeddings produced by each head and a new “output”
matrix WO:

zi = [z1i ; z2i ; . . . zni ]× WO (12.1)

where the superscript j in zji indicates which head produced it, and n

indicates the total number of heads. The dimension of the output matrix
WO is n|v| × |x|, which guarantees that the output embeddings z have
the same dimension as the input embeddings x.

Thus, the complete list of parameters for a multi-head self attention
layer includes n copies of the WQ, WK, and WV matrices, and one copy
of the output matrix WO. Under a typical configuration of |x| = 512,
|k| = |v| = 64, and n = 8, this means that a multi-head self attention
layer contains 1,048,576 parameter weights.

12.1.4 Add and Normalize and Feed Forward Layers
As already mentioned, the next three components, i.e., two instances of
the add and normalize layer, and one feed forward layer, are not that
important conceptually, but they do matter empirically.

Each of the add and normalize layers starts by summing up the input
and output embeddings produced by the previous component. For ex-
ample, the add and normalize layer that follows the self attention layer
sums up the xi and zi for each word i. The motivation for this summa-
tion is to make sure that the signal from the input embeddings x (which
we know from the Chapter 8 carry important information) does not get
lost in the machinery implemented by the self attention layer. Then, the
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resulting embedding, xi+zi, is normalized using layer normalization, as
discussed in Section 6.8. This latter normalization step is yet one more
component that aims to mitigate the exploding gradient problem.

The feed forward layer in between the two add and normalize layers
projects the output embeddings into a new feature space, similar to what
the value matrix, WV, is doing to the input embeddings. This introduces
more parameters in the transformer layer, which allow transformer net-
works to learn more complex functions.

12.2 Sub-word Tokenization
So far, we have used the term “word” to describe the inputs to the first
transformer layer, but that is a misnomer introduced to simplify our pre-
sentation so far. In reality, transformer networks operate over subword
units, i.e., their tokens may be word fragments rather than complete
words. These subword units are generated automatically using the byte
pair encoding (BPE) algorithm for word segmentation (Sennrich et al.,
2015). In a nutshell, this algorithm creates a symbol vocabulary, which
keeps track of the allowed subword units. This dictionary is initialized
with individual characters, including a special symbol </w> that in-
dicates the end of a word. Then, it iteratively counts the frequency of
symbol pairs in a large text corpus, and replaces the most frequent pair
with the concatenation of the two symbols, which is also added to the
symbol dictionary. Merging is not allowed across word boundaries, which
means that the new symbols created during the merge operations are
always subwords (up to entire words), and never include parts of differ-
ent words. The size of the output symbol dictionary is equal to the size
of the initial dictionary plus the number of merge operations (because
each merge creates a new symbol).

For example, assume that bank of the river is part of the training
corpus for the BPE algorithm. Then, in the first iteration, this phrase
will be segmented into individual characters and end-of-word markers:

b a n k </w> o f </w> t h e </w> r i v e r </w>

Let’s say that the most frequent sequence of symbols so far is t h. Then,
after merging these two symbols and adding th the symbol vocabulary,
our text becomes:

b a n k </w> o f </w> th e </w> r i v e r </w>
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Then, if the most frequent pair now is th e, the text becomes:

b a n k </w> o f </w> the </w> r i v e r </w>

and so on, until we reach the desired size for the output symbol dictio-
nary. A typical size for this dictionary is 50,000. Since 50,000 is clearly
smaller than the size of any language’s vocabulary, it is unavoidable that
BPE tokenization will fragment infrequent words into one or more sub-
word units. For example, the word transformers might be fragmented
into transform and ers.

Because transformer networks rely on this subword tokenization, their
input embeddings, i.e., the embeddings that are fed into the first layer in
the architecture (Figure 12.3), no longer align with “traditional” word
embedding algorithms such as word2vec, which operate over complete
words. For this reason, TNs initialize the input embeddings assigned
to subword units randomly, and update them together with the rest of
the their parameters during training (which we will discuss in the next
section).

But why go through this additional trouble of subword tokenization?
There are two advantages. First, operating over subwords makes the
transformer network more robust to unknown words. For example, as-
sume that a transformer network sees the word transformers for the first
time after training. A traditional word embedding algorithm may not
know how to handle this word (or, at least, how to handle it well), but
a transformer network may still be able to, if it tokenizes it into sub-
words that were seen in training such as transform and ers, for which
it has trained input embeddings. The second advantage is saving space.
That is, a word embedding algorithm that relies on complete words may
quickly reach a vocabulary size in the billions. This is because vocabu-
lary size keeps growing indefinitely as the underlying text corpus grows
(Chapter 5 in (Schütze et al., 2008)). This is a problem: if we have a
vocabulary of one billion words, and we use vectors of size 512 for the
input embeddings, we would need 4× 512× 1, 000, 000, 000 = 2, 048 gi-
gabytes8 just to store the input embeddings! In contrast, a transformer
network with 50,000 subword units requires only 4×512×50, 000 = 102.4

megabytes for its input embeddings.

8 Assuming we use 4 bytes to store each real number in the 512-dimensional
embedding vector.



208 Contextualized Embeddings and Transformer Networks

12.3 Training a Transformer Network
So far, we have introduced transformer networks, which allow us to con-
struct contextualized embeddings for a sequence of (subword) tokens.
But how do we learn their parameters, e.g., the input embeddings for the
subword tokens, or the various W matrices in each layer? At a high level,
the training process for transformer networks consists of two steps: one
unsupervised procedure called pre-training, and a supervised one called
fine-tuning (Devlin et al., 2018). Devlin et al. (2018) called the trans-
former network that resulted from this training process BERT, from
Bidirectional Encoder Representations from Transformers.9 We discuss
the two training procedures next.

12.3.1 Pre-training
The pre-training procedure uses a masked language model (MLM) ob-
jective (Devlin et al., 2018). That is, during pre-training we randomly
mask tokens in some input text by replacing them with a special token,
e.g., [MASK], and ask the transformer network to guess the token behind
the mask. Typically, 15% of the input tokens are masked in the training
texts. While this task may sound trivial, there are several important
details that need discussing:

(i) First, this task is implemented as a multi-class classifier that uses
as input the contextualized embeddings of the masked words and
generates one of the subword tokens from the vocabulary created by
the BPE algorithm. That is, imagine the transformer as the sequence
of layers as summarized in Figure 12.2. Then, if we mask the word
river, the classifier that guesses the masked word will operate on
top of the contextualized embedding produced by layer n for the
word river. The classifier itself is implemented as a softmax layer that
produces a probability distribution over all the tokens in the BPE
vocabulary, and is trained with the usual cross-entropy loss function,
which maximizes the probability of the “correct” token, i.e., the token
that was masked.

(ii) Pre-training is often referred to as an unsupervised algorithm because
it does not require any annotated training data from domain experts
(e.g., as we would when training our review classifier). This is not

9 This started a somewhat unfortunate trend that overused Muppet names for
variants of transformer network architectures.
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Figure 12.4 Input example for the next sentence prediction pre-training
task. [SEP] is a special separator token used to indicate end of sentence.
The [CLS] token stands for class, and is used to train the binary classifier,
which indicates if sentence B follows sentence A in text or not. The ##
marker indicates that the corresponding token is a subword token that
should be appended to the token to its left.

entirely correct: after all, the texts used during pre-training are writ-
ten by people and, thus, provide some human supervision. However,
what is important is that, for most languages, there is a plethora of
texts available on the web that can be easily transformed into train-
ing data for transformer networks using the masked language model
trick. For this reason, most MLM pre-training settings include billions
of words. This allows transformer networks to capture many language
patterns before they are trained on any specific NLP application (see
the fine-tuning subsection below)!

(iii) Because the masked tokens can appear anywhere in a given text and,
thus, there is meaningful context that can be used to guess the masked
token both to the left and to the right of the mask, this pre-training
procedure is called a bidirectional language model. This is to contrast
it with traditional language modeling (LM) tasks, which normally
proceed left to right. That is, a traditional LM guesses what word
follows after the user types a few words, like the texting application
in your phone. The pre-training procedure does not have this direc-
tionality constraint, as it can “peek” on both sides of the mask.

A second pre-training procedure that was proposed by Devlin et al.
(2018) is next sentence prediction (NSP). This task trains transformer
networks to predict which sentence follows a given sentence. Similar to
the previous MLM task, this task is “unsupervised,” in the sense that is
relies solely on text without any additional expert annotations. However,
unlike MLM, which operates over contextualized embeddings of individ-
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ual tokens, this task requires a different setting, which is exemplified in
Figure 12.4. The figure shows that, unlike the original transformer net-
work, the input embeddings for NSP sum up three embeddings: token
and position embeddings (similar to the original architecture) and a new
embedding that encodes which segment the current token belongs to (A
or B). More importantly, this architecture introduces the virtual [CLS]
token, which is inserted at the beginning of the text, and whose contex-
tualized embedding is used to train the binary NSP classifier. That is,
the actual classifier is a sigmoid on top of the contextualized embedding
for [CLS]. Note that the [CLS] token is treated like any other token
in the text, i.e., its attention weights cover all the tokens in the text.
Thus, the classifier that operates on top of the [CLS] contextualized
embedding has indirect access to the entire text through its attention
mechanism.

To train the classifier, NSP generates positive examples from actual
sentences that follow a given sentence (as in the figure), and negative
examples from sentences randomly sampled from the corpus. The pro-
portion of negative to positive examples is 1:1.

Devlin et al. (2018) report that pre-training BERT with NSP benefits
downstream tasks such as question answering. However, other works
have “questioned the necessity of the NSP loss” for NLP applications
(Liu et al., 2019). That is, Liu et al. (2019) observe that training solely
with the MLM objective performs just as well or better than training
with both MLM and NSP on downstream tasks.

12.3.2 Fine-tuning
The above pre-training procedures allow transformer networks to cap-
ture a variety of language patterns that are application independent. In
contrast, fine-tuning trains transformer networks for specific NLP appli-
cations such as text classification, question answering, natural language
inference, etc. We will discuss these applications in detail in Chapter 16.
For now, we will just mention that many of these applications can be
modeled with architectures similar to the one shown in Figure 12.4,
where one or more texts (separated by [SEP]) are preceded by a [CLS]
token, which drives the actual classification. Table 12.2 shows a few
example inputs for two NLP applications. As the table shows, many
of these tasks can be reduced to classification tasks (again, on top of
the [CLS] embedding) that receive as input one or more sentences. For
example, for review classification, the input sentences are the actual sen-
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Table 12.2 Two examples of NLP application inputs formatted for
transformer networks. In the first example, the classifier on top of the
[CLS] embedding should predict the Positive label; in the second case

the prediction is Entailment.

Application Example input

Review classification [CLS] although this was obvious ##ly a
low budget production the perform ##an-
ces and the songs in this movie are worth
seeing . [SEP] one of walken ’s few musical
roles to date . [SEP]

Natural language inference [CLS] Some students are reading . [SEP]
Two students are reading the deep learning
book . [SEP]

tences in the review, and the classification task needs to produce multiple
labels such as Positive, Negative, or Neutral. For natural language in-
ference, a hypothesis sentence is followed by a premise sentence. The
classification task in this case is to indicate if the premise entails the
hypothesis, it contradicts it, or the premise is neutral for the current
hypothesis.

During fine-tuning, the training process receives a transformer net-
work that was pre-trained using one of the algorithms discussed in the
previous subsection. The training continues with a loss function that
is specific to the task at hand. For example, for review classification,
the loss will be the standard cross-entropy, which will maximize the
probability of the correct review label, e.g., Positive for the review in
Table 12.2.

12.4 Drawbacks of Transformer Networks
At the time this book was written, transformer networks dominate the
field natural language processing. However, despite their success, trans-
former networks are not perfect. The first important limitation is that
their self-attention mechanism (Section 12.1.2) has a quadratic runtime.
That is, the contextualized representation for each token is computed
by iterating over all tokens in the input. This cost is mitigated through
the parallelism offered by GPUs. However, when GPUs are not avail-
able, transformer networks are considerably slower than recurrent neural
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networks, whose runtime overhead is linear in the sequence size. More
recent transformer variants replaced the original quadratic self-attention
mechanism with linear methods (see Section 12.6).

Second, the positional embeddings in the original transformer archi-
tecture (Section 12.1.1) encode absolute token positions in the text. This
makes little sense for most NLP applications. For example, in the case
of syntactic parsing, what information does position 17 provide for a to-
ken’s syntactic role? Recent works have made similar observations, and
proposed novel architectures that encode the relative positions between
any two tokens in the self-attention mechanism. This allows transformers
to encode information that is more meaningful for language processing.
For example, continuing the syntactic parsing use case, the position of
a noun relative to a verb provides hints of its subject or object role (see
Section 12.6 for details).

12.5 Historical Background
Transformer networks were introduced by Vaswani et al. (2017) for ma-
chine translation. Devlin et al. (2018) focused on the encoder component
of the transformer architecture. They introduced several pre-training
strategies, and showed that, when properly pre-trained, transformer en-
coders obtain new state-of-the-art results on multiple NLP tasks such as
question answering and language inference. These two papers redefined
the NLP landscape in the late 2010s and 2020s. A battery of transformer
variants have been proposed since then that continued to improve the
performance of the original architecture on many applications and lan-
guages. We discuss a few of these methods in the next section.

12.6 References and Further Readings
Liu et al. (2019) revisited the pre-training strategies proposed in the
original BERT paper (Devlin et al., 2018) and observed that BERT was
under-trained. They showed that performance on several downstream
NLP tasks improves: (a) when the transformer encoder is pre-trained
longer on more data that includes longer sequences, and (b) interest-
ingly, when the next sentence prediction objective is removed from pre-
training.

A series of recent papers have proposed more efficient alternatives
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to the original quadratic self-attention mechanism (Kitaev et al., 2020;
Wang et al., 2020; Zaheer et al., 2020; Beltagy et al., 2020). For ex-
ample, Longformer introduces a self-attention mechanism that scales
linearly with the size of the input text (Beltagy et al., 2020). To this
end, Longformer uses a sliding local window for attention around each
token. That is, each token attends only to a constant number of tokens
in its neighborhood (rather than the whole text, as in the original algo-
rithm). This local-window strategy is coupled with the original “global”
self-attention mechanism that is applied only to the [CLS] token, which
is meant to capture a representation of the whole text. Big Bird (Zaheer
et al., 2020) follows a similar strategy that combines local and global
self-attention, but, to increase global coverage, they replace a random
subset of connections from the sliding windows with random connections
from the entire input text.

Several efforts have shown that replacing the absolute positional em-
beddings in the original transformer with relative positional information
yields better contextualized representations that improve downstream
tasks (He et al., 2020; Raffel et al., 2020; Ontanón et al., 2021). For
example, T5 (Raffel et al., 2020) embeds relative position information
in the self-attention mechanism itself. In particular: (a) each relative
position (e.g., two tokens to the right) is mapped to a scalar parameter
that is learned with the rest of the network parameters, and (b) this
parameter is “added to the corresponding score used for computing the
attention weights” between the key and the query (Raffel et al., 2020).
The important thing about these relative position representations is that
are position invariant, i.e. they are the same regardless where the the
tokens appear in the actual input text.

The last important drawback of transformer networks is that they
are large. For example, at the time this book was written, most “large”
transformer configurations have grown to contain tens or hundreds of
billions of parameters, and there are no signs that this trend will stop
anytime soon. While this is an impressive technical achievement, it also
makes this technology inaccessible to many who do not have access to
computers with GPUs and enough memory. To mitigate this problem, a
few papers have “distilled” larger transformer models into smaller ones
that preserve most of the original capabilities (Sanh et al., 2019; Jiao
et al., 2019). For example, Sanh et al. (2019) have shown that it is pos-
sible to “reduce the size of a BERT model by 40%, while retaining 97%
of its language understanding capabilities and being 60% faster.” They
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achieved this by training the smaller model to mimic the predictions of
the larger BERT during pre-training.

12.7 Summary
This chapter introduced the encoder component of transformer net-
works, which produces contextualized representations of words, i.e., em-
beddings that capture the context in which the words appear. The trans-
former encoder enables one to use this architecture as a transducer (i.e.,
classifying every word in the input text) or acceptor (i.e., classifying the
entire input text). The decoder component of this architecture (which
will enable encoder-decoder configurations for transformer networks)
will be discussed in Chapter 14. We also discussed several architectural
choices that enabled the tremendous success of transformer networks,
i.e., self attention, multiple heads, stacking of multiple layers, sub-word
tokenization, as well as how transformers can be pre-trained on large
amounts of data through through masked language modeling and next
sentence prediction.



13
Using Transformers with the Hugging Face

Library

One of the key advantages of transformer networks is the ability to take
a model that was pre-trained over vast quantities of text and fine-tune
it for the task at hand. Intuitively, this strategy allows transformer net-
works to achieve higher performance on smaller datasets by relying on
statistics acquired at scale in an unsupervised way (e.g., through the
masked language model training objective). To this end, in this chapter
we will use the Hugging Face library,1 which has a rich repository of
datasets and pre-trained models, as well as helper methods and classes
that make it easy to target downstream tasks. Using pre-trained trans-
former encoders, we will implement the two tasks that served as use cases
in the previous chapters: text classification and part-of-speech tagging.

13.1 Tokenization
As discussed in Section 12.2, transformers rely on sub-word tokens. This
strategy provides an elegant way to handle unknown and low-frequency
words by splitting them into more frequent sub-word parts. At the same
time, these tokenization algorithms maintain frequently-occurring words
as standalone tokens, so the signal for these common words is preserved.

To make this more concrete, we show below how tokenizers are em-
ployed in the Hugging Face library. First, we load the tokenizer that
corresponds to the transformer we intend to use. This is important for
two reasons: (a) different transformers rely on different tokenization al-
gorithms, and (b) even for the ones that use the same algorithm, their
tokenizer vocabularies are likely to be different if they were pre-trained
1 https://huggingface.co/docs/transformers/main/en/index
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on different corpora. Next, we tokenize some example text and display
some of the resulting attributes with pandas:

[1]: from transformers import AutoTokenizer
import pandas as pd

# load tokenizer
transformer_name = 'bert-base-cased'
tokenizer = AutoTokenizer.

↪→from_pretrained(transformer_name)

# tokenize text
text = 'I am the walrus.'
output = tokenizer(text)

# display results
pd.dataframe(

[output.tokens(), output.word_ids(), output.
↪→input_ids],

index=['tokens', 'word_ids', 'input_ids'],
)

0 1 2 3 4 5 6 7 8

tokens [CLS] I am the wa ##l ##rus . [SEP]

word_ids None 0 1 2 3 3 3 4 None

input_ids 101 146 1821 1103 20049 1233 6208 119 102

As shown above, the tokenizer splits the text into tokens, and adds two
special tokens: the [CLS] token at the beginning of the token sequence,
and the [SEP] token at the end. Also, note that the ## characters at the
beginning of some tokens indicate that they are not standalone words,
but rather sub-words that continue a word previously started. For ex-
ample, the output above shows that the word walrus was split into three
sub-words. Note, however, that this is specific to this particular tokeniza-
tion algorithm, and other tokenizers may indicate word continuation in
different ways. A better way to detect word continuations is using the
word_ids() method of the tokenizer output, which assigns the same id
to all tokens part of the same word. For example, all fragments of the
word walrus share the word id 3. Lastly, the input_ids attribute pro-
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vides the token ids used internally by the transformer to map tokens to
embeddings.

To briefly demonstrate how different tokenizers produce different out-
puts, here is the same text tokenized with the tokenizer corresponding
to xlm-roberta-base:

0 1 2 3 4 5 6 7

tokens <s> ▁I ▁am ▁the ▁wal rus . </s>

word_ids None 0 1 2 3 3 3 None

input_ids 0 87 444 70 32973 6563 5 2

Note how the [CLS] and [SEP] special tokens have been replaced
with <s> and </s> respectively. Also, spaces have been replaced with
the Unicode character (U+2581, LOWER ONE EIGHTH BLOCK).
Tokens that start with that character are considered word beginnings
and the rest are word continuations, as can be confirmed by looking at
the word ids. This illustrates the importance of using the tokenizer that
corresponds to the transformer you intend to use.

13.2 Text Classification
For our text classification example, we will continue using the AG News
dataset from previous chapters. We will load, preprocess, and split the
dataset into pandas dataframes in the same way as before. Now how-
ever, rather than continuing with pandas, we will create a Hugging Face
dataset from the dataframes. Hugging Face datasets are convenient be-
cause of their built-in support of batching, efficient data transformations,
and caching. In particular, we convert each dataframe into a Hugging
Face dataset. The various datasets are managed with a DatasetDict.
Note that this is the same data structure seen when downloading a Hug-
ging Face dataset from their hub.2 The keys in this dictionary are usually
train, validation, and test:3

[5]: from datasets import Dataset, DatasetDict

ds = DatasetDict()

2 https://huggingface.co/datasets
3 These correspond to the more common terms train, development, and test we

have used throughout the book so far. In this chapter we use the Hugging Face
naming conventions for consistency.

https://huggingface.co/datasets
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ds['train'] = Dataset.from_pandas(train_df)
ds['validation'] = Dataset.from_pandas(eval_df)
ds['test'] = Dataset.from_pandas(test_df)
ds

[5]: DatasetDict({
train: Dataset({

features: ['label', 'title', 'description',␣
↪→'text'],

num_rows: 108000
})
validation: Dataset({

features: ['label', 'title', 'description',␣
↪→'text'],

num_rows: 12000
})
test: Dataset({

features: ['label', 'title', 'description',␣
↪→'text'],

num_rows: 7600
})

})

Once our dataset is loaded, we load a tokenizer. Different pre-trained
models are tokenized differently, and it is important to select the to-
kenizer that corresponds to the model we will use so that the inputs
are consistent with model expectations. In our example, we will use the
bert-base-cased pre-trained model and tokenizer:

[6]: from transformers import AutoTokenizer

transformer_name = 'bert-base-cased'
tokenizer = AutoTokenizer.

↪→from_pretrained(transformer_name)

Datasets have a map() method that transforms the dataset by apply-
ing a function to each example. The method returns a new dataset with
the transformation applied. We use the map() method to tokenize our
dataset. To this end, we define a function that tokenizes an example
using the tokenizer we loaded previously. Note that tokenizers support
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many options that you may need depending on your situation. How-
ever, since this is a simple scenario, all we need to do is provide the
text to tokenize and specify how to handle texts that exceed the max-
imum number of tokens permitted by the pre-trained model. Here we
have our tokenizer truncate any inputs that are too long by specifying
the truncation=True parameter. The output of this function will be
added to the new dataset as extra columns. Further, we also want to
remove some of the columns that are no longer needed, simplifying sub-
sequent steps. For this, we use the remove_columns argument, listing
the columns that we want to discard.

Additionally, the dataset’s map() method can batch the dataset; we
enable this option with the batched=True argument:

[7]: def tokenize(batch):
return tokenizer(batch['text'], truncation=True)

train_ds = ds['train'].map(
tokenize,
batched=True,
remove_columns=['title', 'description', 'text'],

)
eval_ds = ds['validation'].map(

tokenize,
batched=True,
remove_columns=['title', 'description', 'text'],

)
train_ds.to_pandas()
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label input_ids token_type_ids attention_mask

0 3
[101, 3270, 11906, 1522, 1146, 7106,

1111, 251...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

1 0
[101, 4222, 11404, 1174, 117, 1476,

1130, 2696...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

2 0
[101, 158, 119, 156, 119, 12068, 5084,

1116, 9...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

3 2
[101, 22087, 8223, 1611, 1106, 4417,

5572, 324...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

4 0
[101, 7270, 118, 2733, 1383, 1111,

12448, 7430...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

... ... ... ... ...

107995 0
[101, 6096, 117, 10378, 3969, 5977,

1111, 8988...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

107996 0
[101, 16409, 118, 16587, 159, 4064,

1106, 1564...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

107997 0
[101, 19569, 5480, 10582, 2087, 1867,

158, 119...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

107998 0
[101, 11560, 3881, 108, 3614, 132,

3498, 2944,...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

107999 3
[101, 1130, 139, 24683, 131, 21107,

2050, 1739...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...

108000 rows × 4 columns

Next, we implement a classifier for our task. Hugging Face provides a
variety of models corresponding to several types of downstream tasks.
However, for pedagogical purposes, we implement one from scratch. In
particular, our model class inherits from BertPreTrainedModel, which
provides several useful methods such as init_weights() and from_pretrained()
methods, which we will use later. The model constructor takes a config-
uration object as its only parameter. Configuration objects contain all
the hyper-parameters used by the corresponding pre-trained models. We
will show later how the configuration model is retrieved and customized.

Models that implement specific downstream tasks are usually com-
posed of a pre-trained model (sometimes referred as the body), and
one or more task-specific layers (usually referred as the head). Here,
we initialize a BertModel using the provided configuration, as well as a
dropout layer and a task-specific linear layer used for classifying the Bert
output. Each of these layers is initialized by calling the init_weights()
method inherited from BertPreTrainedModel.

The forward() method, which implements the task-specific forward
pass, takes as arguments the outputs of the tokenizer, and, optionally,
the gold labels corresponding to the input data points. Our implemen-
tation of the forward pass sends the input tokens to the Bert model to
produce the contextualized representations for all tokens. This output
has several components, including the last_hidden_state which con-
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tains the final hidden-state embedding for each token. For our task, we
will represent the whole sequence using the embedding for the [CLS]
token that occurs at the start of each example. We retrieve it by se-
lecting the first element of each output sequence in the batch (i.e.,
last_hidden_state[:, 0, :]).

As in the previous chapters, we apply dropout to our sequence rep-
resentation, and then pass it through our linear classification layer. If
gold labels are provided (i.e., we are training), we now compute the loss
using the cross-entropy loss. The output of the forward pass is wrapped
in a Hugging Face SequenceClassifierOutput object4 and returned:

[8]: from torch import nn
from transformers.modeling_outputs import␣

↪→SequenceClassifierOutput
from transformers.models.bert.modeling_bert import␣

↪→BertModel, BertPreTrainedModel

class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):

super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.

↪→hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size,␣

↪→config.num_labels)
self.init_weights()

def forward(self, input_ids=None,␣
↪→attention_mask=None, token_type_ids=None, labels=None,␣
↪→**kwargs):

outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
**kwargs,

4 Hugging Face utilizes a set of output objects to standardize model output for a
given task. These objects typically include additional information, e.g., attention
weights, which can be used for visualizing or debugging model behavior.
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)
cls_outputs = outputs.last_hidden_state[:, 0, :]
cls_outputs = self.dropout(cls_outputs)
logits = self.classifier(cls_outputs)
loss = None
if labels is not None:

loss_fn = nn.CrossEntropyLoss()
loss = loss_fn(logits, labels)

return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,

)

Next we load the configuration of the pre-trained model and instanti-
ate our model. The AutoConfig class can load the configuration for any
pre-trained model, retrieving it from Hugging Face if needed. Then we
use the configuration to instantiate our model using the from_pretrained()
method. With this call, the pre-trained model will be loaded, which in-
cludes downloading if necessary:

[9]: from transformers import AutoConfig

config = AutoConfig.from_pretrained(
transformer_name,
num_labels=len(labels),

)

model = (
BertForSequenceClassification
.from_pretrained(transformer_name, config=config)

)

Hugging Face provides a Trainer class that greatly simplifies the
training process. This class not only implements the training loop we
have been using in the previous chapters, but also handles other useful
steps such as saving checkpoints (i.e., intermediate models after a num-
ber of mini-batches have been processed during training), and track-
ing custom measures about model performance. In order to create a
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Trainer, we first need to specify its configuration in a TrainingArguments
object. In ours, we specify certain hyper parameters such as batch size,
weight decay, and number of epochs, as well as where to store model
checkpoints:

[11]: from transformers import TrainingArguments

num_epochs = 2
batch_size = 24
weight_decay = 0.01
model_name =␣

↪→f'{transformer_name}-sequence-classification'

training_args = TrainingArguments(
output_dir=model_name,
log_level='error',
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
evaluation_strategy='epoch',
weight_decay=weight_decay,

)

The TrainingArguments class provides a wide variety of arguments
that we have not shown.5 These arguments usually have appropriate
default values, so it is often fine to omit them. For example, we did not
use the label_names argument, which specifies the key that corresponds
to the training labels. When omitted, it defaults to keys such as label,
labels and label_ids.6 In this chapter we used label.

Note that we also specify how often we would like to see the perfor-
mance of the current model (at the end of each epoch) with evaluation_strategy='epoch'.
This means that after each epoch we print the current loss on the training
partition and on the evaluation dataset, if one is available. Additionally,
we can report custom metrics at this time. For this purpose, we use the
compute_metrics parameter of the Trainer, which expects a function
that receives a transformers.EvalPredictions object containing the
5 https://huggingface.co/docs/transformers/main/en/main_classes/trainer#

transformers.TrainingArguments
6 In the case of extractive question answering (see Chapter 16), the

start_positions and end_positions store the start/end positions of the correct
answers.

https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments
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label ids and the predicted logits. The expected return type is a dictio-
nary whose keys correspond to different metrics, each of which will be
displayed as a separate result column.

[12]: from sklearn.metrics import accuracy_score

def compute_metrics(eval_pred):
y_true = eval_pred.label_ids
y_pred = np.argmax(eval_pred.predictions, axis=-1)
return {'accuracy': accuracy_score(y_true, y_pred)}

Using the above TrainingArguments and compute_metrics function,
we create our Trainer. Note that when you provide a tokenizer, the
trainer will automatically pad the sequences in each batch. Also, the
trainer will automatically use any GPU that is available, unless specifi-
cally disabled in the TrainingArguments.

[13]: from transformers import Trainer

trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_ds,
eval_dataset=eval_ds,
tokenizer=tokenizer,

)

Training our model takes a single call to the train() method of the
Trainer object. As specified in the our instance of TrainingArguments,
the training and validation losses, as well as the accuracy, are reported
every epoch.

[14]: trainer.train()

Epoch Training Loss Validation Loss Accuracy

1 0.187800 0.172629 0.941667

2 0.104000 0.183001 0.946250

As in the other chapters, we can write custom code to obtain the
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model’s predictions on the test data. However, the Trainer class pro-
vides a predict() method that drastically simplifies this:

[17]: from sklearn.metrics import classification_report

output = trainer.predict(test_ds)
y_true = output.label_ids
y_pred = np.argmax(output.predictions, axis=-1)
print(classification_report(y_true, y_pred,␣

↪→target_names=labels))

precision recall f1-score support

World 0.96 0.95 0.96 1900
Sports 0.99 0.99 0.99 1900

Business 0.93 0.91 0.92 1900
Sci/Tech 0.91 0.94 0.92 1900

accuracy 0.95 7600
macro avg 0.95 0.95 0.95 7600

weighted avg 0.95 0.95 0.95 7600

As shown in the table above, this model achieves an accuracy of 95%,
which is the highest performance we have achieved so far on this dataset.

13.3 Part-of-speech Tagging
To showcase part-of-speech tagging using transformers, we continue with
the Spanish section of the AnCora corpus introduced in Chapter 11.
Recall that the dataset is stored in the CoNLL-U format. We load this
format in the same way as before, but then we convert the loaded dataset
into a Hugging Face DictDataset:

[5]: from datasets import Dataset, DatasetDict

ds = DatasetDict()
ds['train'] = Dataset.from_pandas(train_df)
ds['validation'] = Dataset.from_pandas(valid_df)
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ds['test'] = Dataset.from_pandas(test_df)
ds

[5]: DatasetDict({
train: Dataset({

features: ['words', 'tags'],
num_rows: 14305

})
validation: Dataset({

features: ['words', 'tags'],
num_rows: 1654

})
test: Dataset({

features: ['words', 'tags'],
num_rows: 1721

})
})

Importantly, because the CoNLL-U dataset is already tokenized, we
use the is_split_into_words=True tokenizer argument to ensure that
the tokenizer respects the existing word boundaries during its sub-word
tokenization. Further, while we want to predict one POS tag per word,
any given word may be split into smaller pieces by our tokenizer. Thus,
we need to align the tokenizer output to the CoNLL-U words. The orig-
inal BERT paper (Devlin et al., 2018) addresses this by only using the
embedding corresponding to the first sub-token for each word. We follow
the same approach for consistency. For the sub-words that do not corre-
spond to the beginning of a word, we use a special value that indicates
that we are not interested in their predictions. The CrossEntropyLoss
has a parameter called ignore_index for this purpose. The default value
for this parameter is −100, which we use as the label for the sub-words
we wish to ignore during training:

[9]: # default value for CrossEntropyLoss ignore_index␣
↪→parameter
ignore_index = -100

def tokenize_and_align_labels(batch):
labels = []
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# tokenize batch
tokenized_inputs = tokenizer(

batch['words'],
truncation=True,
is_split_into_words=True,

)
# iterate over batch elements
for i, tags in enumerate(batch['tags']):

label_ids = []
previous_word_id = None
# get word ids for current batch element
word_ids = tokenized_inputs.

↪→word_ids(batch_index=i)
# iterate over tokens in batch element
for word_id in word_ids:

if word_id is None or word_id ==␣
↪→previous_word_id:

# ignore seen word ids
label_ids.append(ignore_index)

else:
# get tag id for corresponding word
tag_id = tag_to_index[tags[word_id]]
label_ids.append(tag_id)

# remember this word id
previous_word_id = word_id

# save label ids for current batch element
labels.append(label_ids)

# store labels together with the tokenizer output
tokenized_inputs['labels'] = labels
return tokenized_inputs

Next, we use this function to preprocess the train and validation folds
in our DatasetDict:

[10]: train_ds = ds['train'].map(
tokenize_and_align_labels,
batched=True,

)
eval_ds = ds['validation'].map(



228 Using Transformers with the Hugging Face Library

tokenize_and_align_labels,
batched=True,

)
train_ds.to_pandas()

words tags input_ids attention_mask labels

0
[El, presidente, de,

el, órgano,
regulador, de...

[DET, NOUN, ADP, DET,
NOUN, ADJ, ADP, DET,

PRO...

[0, 540, 9692, 8, 88,
103633, 15913,

1846, 8, ...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 0, 1, 2, 0, 1,
3, -100, 2, 0, 4,

-100, ...

1
[Sobre, la, oferta,
de, interconexión,

con, Te...

[ADP, DET, NOUN, ADP,
NOUN, ADP, PROPN,

ADP, D...

[0, 44125, 21, 19806,
8, 1940, 2271, 3355,

194...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 2, 0, 1, 2, 1,
-100, -100, -100, 2,

4, ...

2
[Afirmó, que, sigue,
el, criterio, europeo,

y,...

[VERB, SCONJ, VERB,
DET, NOUN, ADJ,

CCONJ, SCO...

[0, 62, 38949, 849,
41, 58453, 88,
166220, 620...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 6, -100,
-100, 7, 6, 0, 1, 3,

10, 7, 6,...

3
[La, inversión, en,

investigación,
básica, es,...

[DET, NOUN, ADP,
NOUN, ADJ, AUX, DET,

NOUN, AD...

[0, 239, 98649, 22,
31674, 124528, 198,

88, 46...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 0, 1, 2, 1, 3,
9, 0, 1, 2, 0, 1, 10,

0,...

4
[Durante, la,

presentación, de, el,
libro, ", ...

[ADP, DET, NOUN, ADP,
DET, NOUN, PUNCT,

DET, P...

[0, 24292, 21, 43945,
8, 88, 7750, 44, 239,

78...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 2, 0, 1, 2, 0,
1, 8, 0, 4, -100, 2,

4, ...

... ... ... ... ... ...

14300
[Y, todas, las,

miradas, convergen,
en, la, lu...

[CCONJ, DET, DET,
NOUN, VERB, ADP, DET,

NOUN, ...

[0, 990, 5136, 576,
100688, 7, 158, 814,

1409,...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 10, 0, 0, 1,
-100, 6, -100, -100,

2, 0,...

14301
[Conviene, que,

ahora, ,, en, plena,
apoteosis...

[VERB, SCONJ, ADV,
PUNCT, ADP, ADJ,

NOUN, ADP,...

[0, 1657, 7772, 13,
41, 18451, 6, 4, 22,

31161...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 6, -100,
-100, 7, 11, 8, -100,

2, 3, 1,...

14302
[Cambiar, las,

formas, parece, de,
rigor, ,, p...

[VERB, DET, NOUN,
VERB, ADP, NOUN,

PUNCT, CCON...

[0, 313, 61055, 42,
576, 26497, 12295,

8, 7599...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 6, -100,
-100, 0, 1, 6, 2, 1,

8, -100, ...

14303
[Carlos, y, Fayna,
se, enzarzan, en,

una, bron...

[PROPN, CCONJ,
PROPN, PRON, VERB,

ADP, DET, NO...

[0, 24856, 113,
114162, 76, 40, 22,

6383, 5935...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 4, 10, 4,
-100, 5, 6, -100,

-100, 2, 0,...

14304
[Él, llega, a, tirar, la,

sobre, la, cama, y, ...

[PRON, VERB, ADP,
VERB, PRON, ADP, DET,

NOUN, ...

[0, 124043, 47612,
10, 61846, 21, 1028,

21, 39...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,

1, ...

[-100, 5, 6, 2, 6, 5,
2, 0, 1, 10, 5, 6, 0,

1,...

14305 rows × 5 columns

Next, we implement our model class that uses a transformer encoder as
a transducer. Because our downstream task consists of POS tagging for
Spanish, we need a transformer model that was pre-trained on Spanish
texts. Here, we chose XLM-RoBERTa (Conneau et al., 2019) as our base
model. XLM-Roberta is a RoBERTa model (Liu et al., 2019) that has
been pre-trained on 100 different languages, including Spanish. Of note,
XLM-RoBERTa does not require us to specify what language we are
working on. Similar to BERT, it only requires the input_ids.

We discussed in the text classification section that Hugging Face pro-
vides implementations for text classification models. This is also true
for token classification problems that require transducers. In particular,
the XLMRobertaForTokenClassification model provided by Hugging
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Face does everything needed for this task. However, as before, here we
implement it ourselves for pedagogical purposes.

The model architecture is similar to our text classification example.
It consists of a transformer, a dropout layer, and a linear layer used
for classification. The number of labels which determines the output di-
mension of the linear layer is equal to the number of POS tags. The
primary difference between the text classification example and this to-
ken classification model is that with the former we produced one la-
bel for each text document, while here we produce one label for each
token in the input text. Specifically, in our text classification model
the output shape was two-dimensional: (batch_size, num_labels).
Here, our output is three-dimensional: (batch_size, sequence_size,
num_labels). So, while much of the forward method is familiar to us,
when we are required to compute the loss, we need to reshape the logits
and the labels before passing them to the CrossEntropyLoss, since it
expects two-dimensional input and one-dimensional labels. For this pur-
pose, we use the view() method to reshape the tensors. This method
is efficient because it does not copy the tensor data. Instead it provides
a new view of the same data that behaves like a tensor with a differ-
ent shape.7 As mentioned before, the number of arguments passed to
this method determines the number of dimensions in the output tensor.
Here, for our logits, we pass two arguments and so our new view will
have two dimensions. The second will be the size of self.num_labels,
while the first (because we pass -1) will be inferred based on the original
tensor shape. For our labels, on the other hand, we only provide one
argument and so the new view will have one dimension, inferred by the
original shape:

[11]: from torch import nn
from transformers.modeling_outputs import␣

↪→TokenClassifierOutput
from transformers.models.roberta.modeling_roberta import␣

↪→RobertaModel, RobertaPreTrainedModel

7 Similar to NumPy, PyTorch tensors are represented internally by a block of
memory storing the data and some metadata that describes how the data should
be read, e.g., type, shape, and stride. The view() method returns a new tensor
with new metadata but pointing to the same memory block.
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class␣
↪→XLMRobertaForTokenClassification(RobertaPreTrainedModel):
↪→

def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config,␣

↪→add_pooling_layer=False)
self.dropout = nn.Dropout(config.

↪→hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size,␣

↪→config.num_labels)
self.init_weights()

def forward(self, input_ids=None,␣
↪→attention_mask=None, token_type_ids=None, labels=None,␣
↪→**kwargs):

outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
**kwargs,

)
sequence_output = self.dropout(outputs[0])
logits = self.classifier(sequence_output)
loss = None
if labels is not None:

loss_fn = nn.CrossEntropyLoss()
inputs = logits.view(-1, self.num_labels)
targets = labels.view(-1)
loss = loss_fn(inputs, targets)

return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,

)
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Next, we instantiate our model using the XLM-RoBERTa configura-
tion:

[12]: from transformers import AutoConfig

transformer_name = 'xlm-roberta-base'

config = AutoConfig.from_pretrained(
transformer_name,
num_labels=len(index_to_tag),

)

model = (
XLMRobertaForTokenClassification
.from_pretrained(transformer_name, config=config)

)

As before, we create a TrainingArguments object and define a compute_metrics
function in order to customize a Trainer:

[13]: from transformers import TrainingArguments

num_epochs = 2
batch_size = 24
weight_decay = 0.01
model_name = f'{transformer_name}-finetuned-pos-es'

training_args = TrainingArguments(
output_dir=model_name,
log_level='error',
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
evaluation_strategy='epoch',
weight_decay=weight_decay,

)

While the TrainingArguments code has no substantial changes, we
need to adjust the compute_metrics function to account for the fact
that our model uses sub-word tokens rather than complete words. Recall
that only the first sub-word token per word was assigned a POS tag.
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This function discards the labels corresponding to the ignored sub-word
tokens and evaluates the rest, returning the accuracy score:

[14]: from sklearn.metrics import accuracy_score

def compute_metrics(eval_pred):
# gold labels
label_ids = eval_pred.label_ids
# predictions
pred_ids = np.argmax(eval_pred.predictions, axis=-1)
# collect gold and predicted labels, ignoring␣

↪→ignore_index label
y_true, y_pred = [], []
batch_size, seq_len = pred_ids.shape
for i in range(batch_size):

for j in range(seq_len):
if label_ids[i, j] != ignore_index:

y_true.
↪→append(index_to_tag[label_ids[i][j]])

y_pred.
↪→append(index_to_tag[pred_ids[i][j]])

# return computed metrics
return {'accuracy': accuracy_score(y_true, y_pred)}

The last component required for the Trainer is a collator. Since this
time we are batching sequences of tokens, we need a collator that can pad
them dynamically when constructing the batches. The transformers
library includes a DataCollatorForTokenClassification specifically
for this purpose. Once we have our collator and our trainer object, we
can train our model:

[15]: from transformers import Trainer
from transformers import␣

↪→DataCollatorForTokenClassification

data_collator =␣
↪→DataCollatorForTokenClassification(tokenizer)

trainer = Trainer(
model=model,
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args=training_args,
data_collator=data_collator,
compute_metrics=compute_metrics,
train_dataset=train_ds,
eval_dataset=eval_ds,
tokenizer=tokenizer,

)

trainer.train()

Next, we evaluate our newly trained model on the test dataset. For this
purpose, we preprocess the data in the same way we did for the train
and validation partitions. Then, for convenience, we use the trainer’s
predict() method to generate the predicted logits using our model:

[16]: test_ds = ds['test'].map(
tokenize_and_align_labels,
batched=True,

)
output = trainer.predict(test_ds)

As before, we use scikit-learn’s classification_report() function
to display the results of the evaluation. This function expects two one-
dimensional lists of labels, so we need to follow a similar approach to
the one we employed for text classification. Note that output.label_ids
and output.predictions are NumPy arrays rather than PyTorch ten-
sors. This time we use NumPy’s reshape() method to reshape the ar-
rays. This method is similar to PyTorch’s view() method that we used
previously, except that view() may copy the array’s data in some situ-
ations. We discard the labels corresponding to ignored sub-word tokens,
and then we print the classification report:

[17]: from sklearn.metrics import classification_report

num_labels = model.num_labels
label_ids = output.label_ids.reshape(-1)
predictions = output.predictions.reshape(-1, num_labels)
predictions = np.argmax(predictions, axis=-1)
mask = label_ids != ignore_index
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y_true = label_ids[mask]
y_pred = predictions[mask]
target_names = tags[:-1]

report = classification_report(
y_true, y_pred,
target_names=target_names

)
print(report)

precision recall f1-score support

DET 1.00 1.00 1.00 8040
NOUN 0.99 0.99 0.99 9533
ADP 1.00 1.00 1.00 8332
ADJ 0.98 0.97 0.97 3468

PROPN 0.99 0.99 0.99 4101
PRON 0.99 0.99 0.99 2484
VERB 0.99 0.99 0.99 4544
SCONJ 0.97 0.98 0.98 1210
PUNCT 1.00 1.00 1.00 6314
AUX 0.99 0.99 0.99 1396

CCONJ 1.00 1.00 1.00 1439
ADV 0.99 0.99 0.99 1710
NUM 0.97 0.98 0.97 958

PART 0.93 0.78 0.85 18
SYM 0.97 0.95 0.96 37

INTJ 0.86 0.75 0.80 16

accuracy 0.99 53600
macro avg 0.98 0.96 0.97 53600

weighted avg 0.99 0.99 0.99 53600

Our model based on XLM-RoBERTa achieves 99% accuracy. This is
considerably better than the LSTM-based model developed in Chap-
ter 11. In order to understand the differences between the two methods,
we produce below a confusion matrix for the results of each model. Rows
in the confusion matrix represent the true labels and columns represent
the predicted labels. In the confusion matrices shown below, each cell
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xij corresponds to the proportion of values with label i that were as-
signed the label j.8 For a perfect model, all cells in the diagonal would
have value 1 and all other cells would have value 0. The code used to
generate the confusion matrix is shown below. The confusion matrices
for the LSTM and transformer are show in Figure 13.1 and Figure 13.2,
respectively.

[18]: import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay,␣

↪→confusion_matrix

cm = confusion_matrix(y_true, y_pred, normalize='true')
disp = ConfusionMatrixDisplay(

confusion_matrix=cm,
display_labels=target_names,

)

fig, ax = plt.subplots(figsize=(10,10))
disp.plot(

cmap='Blues',
values_format='.2f',
colorbar=False,
ax=ax,
xticks_rotation=45,

)

The two confusion matrices highlight a couple of important observa-
tions. First, the transformer model is considerably better at predicting
POS tags with infrequent support in the dataset. For example, the ac-
curacy for predicting the SYM POS tag increased from 38% in the LSTM
model to 95% in the transformer model! Equally as impressive, the trans-
former improved the performance of tags that are extremely common,
and, thus, provide plenty of opportunity to both approaches to learn
a good model. For example, the accuracy of tagging NOUN, the second
most common POS tag in the dataset, increased from 96% in the LSTM
model to 99% in the transformer model.

8 This is the case because we used the normalize='true' parameter of the
confusion_matrix() function.
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l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.96 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.00 0.93 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.07 0.00 0.02 0.89 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.95 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00

0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.85 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.61 0.00 0.00

0.00 0.03 0.00 0.00 0.11 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.03 0.00 0.38 0.00

0.00 0.19 0.00 0.12 0.06 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50

Figure 13.1 Confusion matrix corresponding to the LSTM-based part-of-
speech tagger developed in Chapter 11.

13.4 Summary
In this chapter we presented two applications driven by the encoder
component of a transformer network. First, we used the transformer
encoder as an acceptor and implemented a text classification application
for English news. Second, we used the encoder as a transducer to develop
a Spanish part-of-speech tagger. Both tasks were implemented using
pre-trained transformer models from the Hugging Face library. For both
applications, the transformer-based methods outperform considerably all
approaches introduced in the previous chapters, highlighting the value
of the transformer architecture.
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1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.78 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.95 0.00

0.00 0.06 0.00 0.06 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.75

Figure 13.2 Confusion matrix corresponding to the transformer-based
part-of-speech tagger.
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Encoder-decoder Methods

In Chapters 10 and 12 we focused on two common usages of RNNs and
transformer networks: acceptors and transducers. In the former case,
we use one single vector that captures the entire text to train classi-
fication tasks that require access to the complete text such as review
classification. This single vector is typically the last hidden state in an
RNN or the [CLS] embedding in a transformer network. In contrast,
transducers train tasks that operate at word level (e.g., part-of-speech
tagging) by operating over the representations produced for each word
(by either RNNs or transformer networks). Both acceptors and trans-
ducers are very useful for many NLP applications (see Chapter 16 for
details). However, these two directions ignore one of the most important
applications in NLP: machine translation. To address this task, we dis-
cuss in this chapter a third architecture for both RNNs and transformer
networks: encoder-decoder methods.

At their core, encoder-decoder architectures encode an input sequence
into a single vector (similar to the acceptor architecture), and use this
vector to decode elements from an output sequence. Figure 14.1 shows
an example of this approach for machine translation, where both encoder
and decoder are implemented using RNNs.

Encoder-decoder approaches are a relatively new direction in the field
of machine translation that started around 2014. Before then, machine
translation operated using explicit features extracted from the languages
to be translated at various levels of complexity. The Vauquois triangle
(Figure 14.2) depicts a hierarchy of these “traditional” approaches to
machine translation based on their sophistication (Jurafsky and Mar-
tin, 2009). As the figure indicates, these approaches range from simplis-
tic methods that rely on lexical conversion between languages to more
complex methods that incorporate syntax and semantics, to the ultimate
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Figure 14.1 An encoder-decoder example for machine translation from
English to Romanian, where both encoder and decoder are implemented
using RNNs. Two virtual tokens, </s> and <s>, indicate end of sentence
and beginning of sentence, respectively. The decoder uses the representa-
tion generated for the entire input sequence, i.e., the hidden state vector
c of the </s> token in the English sentence, to generate the equivalent
Romanian words.

idealized goal of translating to/from an universal interlingua. If we have
to position encoder-decoder methods in this hierarchy, they probably fit
somewhere between the semantic transfer methods (because the repre-
sentations generated by RNNs and transformer networks capture (some)
syntax and semantics) and approaches that rely on the universal inter-
lingua. One may argue, as food for thought, that the representation that
encodes the input sequence (i.e., the hidden state c of the </s> token of
the English sentence in Figure 14.1) is an interlingua, but an interlingua
for machines not people.

Regardless of where encoder-decoder methods fit in the Vauquois tri-
angle, they did simplify the machine translation task tremendously (to
the point where we can now discuss them in this introductory book!),
while, at the same, improve overall machine translation results. In the re-
mainder of this chapter, we describe three encoder-decoder architectures
that apply to RNNs and transformer networks.

14.1 BLEU: an Evaluation Measure for Machine
Translation

Before we discuss specific neural architectures for machine translation,
we briefly overview the most widely used evaluation measure for machine
translation performance. This measure is called BLEU, from bilingual
evaluation understudy (Papineni et al., 2002).

Intuitively, BLEU measures the word overlap between a candidate
translation produced by the machine and a reference translation pro-
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Figure 14.2 The Vauquois triangle that describes the hierarchy of ma-
chine translation approaches.

Table 14.1 A simple example of the BLEU evaluation measure. The
underlined words indicate matches between the candidate translation
and the reference. The BLEU score for this candidate translation is

3/6.

Candidate (machine) The feline sits on the mat.

Reference (human) There is a cat on the mat.

duced by a human. More formally, BLUE “counts up the number of
candidate translation words (unigrams) which occur in any reference
translation and then divides by the total number of words in the can-
didate translation” (Papineni et al., 2002). Table 14.1 shows a simple
example of this computation.

To acknowledge language ambiguity, BLEU allows multiple reference
translations for a given sentence. If more than one reference translation
is available, BLEU picks the highest overlap score. Table 14.2 shows an
example of this situation.

Note that simple overlap can be easily abused by generating the same
word from the reference translation over and over again. BLEU controls
for this situation by allowing each word from the reference translation
to be used just once during the computation of the overlap. Table 14.3
shows an example of this situation.

Lastly, to account for word order, BLEU can be computed for n-
grams, for any value of n. For example, for the candidate and reference
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Table 14.2 The BLEU measure allows multiple reference translations.
In such cases, the highest overlap is used. In this example, the BLEU

score is 4/6 due to the higher overlap with the second reference
translation.

Candidate (machine) The feline sits on the mat.

Reference 1 (human) There is a cat on the mat.
Reference 2 (human) The cat is on the mat.

Table 14.3 Simple overlap can be abused by repeatedly generating the
same word from the reference translation. BLEU prevents this by

allowing each word from a reference translation to be used just once.
Naive overlap would score this candidate translation 6/6; BLEU scores

it 2/6.

Candidate (machine) The the the the the the.

Reference (human) The cat is on the mat.

translation in Table 14.1, the BLEU score over bigrams is 2/5 because
two of the five bigrams in the candidate translation match the reference
bigrams (on the and the mat).

Sidebar 14.1 Other evaluation measures for machine translation

The development of automated evaluation measures for machine trans-
lation remains an active research area. Other measures such as ME-
TEOR (Banerjee and Lavie, 2005) and BLEURT (Sellam et al., 2020),
which allow candidate words to match reference words based not only
on their surface forms but also their stemmed forms or meanings and
also offer better control for word order, have been proposed in literature.
However, BLEU has passed the test of time successfully as it remains
the most widely used machine translation evaluation measure to date.1

1 https://naacl2018.wordpress.com/2018/03/22/test-of-time-award-papers/

https://naacl2018.wordpress.com/2018/03/22/test-of-time-award-papers/
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14.2 A First Sequence-to-sequence Architecture
The first sequence-to-sequence architecture was proposed by Sutskever
et al. (2014) in the context of machine translation. The intuition behind
this approach (exemplified in Figure 14.1) is simple:

(i) We first encode the input sequence (i.e., the text in the source lan-
guage), using an RNN such as a left-to-right LSTM. The hidden state
of the last word in the input text, i.e., the c vector produced for the
</s> token in Figure 14.1, becomes the representation of the entire
input.

(ii) Starting from this representation, we then generate (or decode) one
word at a time from the target language using a second RNN. Each
decoder cell receives three inputs: (a) the input embedding of the pre-
viously decoded word (e.g., the embedding of the word Sunt for the
cell that decodes un), (b) the hidden state of the previous RNN cell,
which is combined with (c) the encoding of the input sentence c (e.g.,
through concatenation). Thus, each decoding cell “knows” where it
stands in the currently decoded text, as well as what the representa-
tion of the source text is. Decoding continues until the stop symbol
(</s>) is generated for the target text. Importantly, the decoded text
does not need to have to have the same length as the input text.

This entire architecture is trained to maximize the accuracy of the
decoded text. That is, each cell in the decoding RNN is encouraged to
produce the correct target word at that position from the vocabulary of
the target language. More formally, the overall loss function is the sum
of multiple cross entropy losses (see Section 6.4), one for each word in
the gold target sequence.

Sutskever et al. (2014) showed that this approach performs consid-
erably better than previous machine translation methods that relied on
explicit feature representations. However, this performance improvement
was observed only after several important “tricks” were implemented:

• According to the authors, the most important modification was re-
versing the word order in the input sequence. For example, instead
of using the input sequence I am a student . from Figure 14.1, this
method uses the reversed text: . student a am I. Thus, the decoder
starts decoding words in the target language using the hidden state
of the first word in the source sentence, I. The intuition behind this
somewhat strange idea is that reversing the input sequence yields a
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better initialization for the decoder. Since it is probable that the sen-
tence in the target language will start with the subject,2 it helps the
decoder if its starting point is the hidden state of the equivalent sub-
ject word in the source language. As we discussed in Section 6.8, the
start matters for the training of neural networks. This trick aims to
find a better initial state for the decoder using the above linguistic
observation.

• The authors also observed that it is important to use two different
LSTMs that do not share parameters: one for the encoder, and one for
the decoder. This makes intuitive sense: since the two RNNs handle
texts in different languages, it is sensible that their parameters be
different.

• Further, the authors used stacked (or deep) LSTMs (see Figure 10.2)
with four layers, each generating hidden state vectors of dimension
1,000, for both encoder and decoder. This suggests that to capture
the subtleties of language translation, one needs networks that encode
complex nonlinear functions and have many parameters. To speed up
the training process, each LSTM layer is executed in parallel on a
different GPU. This sped up the training runtime from 1,700 words
per second (with a single GPU) to 6,300 words per second (with four
GPUs).

• Lastly, the authors used two strategies to hedge the risk of the decoder
committing to an incorrect translation early. First, for each decoding
position, the decoder maintains the best B hypotheses up to that
point. For example, say that for B = 2 the two best hypotheses after
decoding one word are: w1 and w2. At position two, the decoder esti-
mates the probability of all words in the target language3 for each of
the two hypotheses and keeps the two word sequences with the highest
overall probability. For example, the top two hypotheses at position
two could be: w1, w3 and w1, w4. This process continues until end-of-
sentence symbols are generated. This hedging algorithm is called beam
search, from the analogy of a flashlight that has a light beam that only
partially illuminates an unknown, dark space. Second, the authors use
an ensemble of five different instantiations of their system, where each
of these instances is trained using a different random number genera-
tor, which changes the initialization of the network parameters as well
as the order in which they process the data during training. The same

2 According to (Crystal, 1997), the word order in 75% of the world’s languages is
either subject-verb-object or subject-object-verb.

3 Sutskever et al. (2014) used a vocabulary of 80,000 words for the target language.
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beam-search decoding strategy is applied here, with the only change
being that hypotheses are generated by multiple translation systems.

Sutskever et al. (2014) showed that their overall machine translation
approach outperforms previous approaches based on “traditional” statis-
tical machine learning approaches considerably. For example, using an
ensemble of five LSTMs and a beam search with B = 12 for decoding,
the authors report a BLEU score of 34.8% for the translation of English
to French, while a state-of-the-art traditional machine translation ob-
tained only 33.3% BLEU. The fact that this relatively simple approach
outperforms the considerably more complex traditional translation sys-
tem is staggering. However, this performance was only observed after the
above improvements were implemented. Without them, performance is
considerably more modest. For example, a configuration that uses a sin-
gle LSTM and processes the source English text in its natural order
obtains only 26.2% BLEU.

14.3 Sequence-to-sequence with Attention
One critical limitation of the previous approach is that “a neural network
needs to be able to compress all the necessary information of a source
sentence into a fixed-length vector,” (Bahdanau et al., 2015) i.e., into
the hidden state of the last token in the source sentence, as shown in
Figure 14.1. Sutskever et al. (2014)’s workaround for this problem was to
reverse the source sentence, which yields a better initialization for the
decoder. However, this signal becomes less and less meaningful as we
keep decoding the target sentence, which makes it hard for the decoder
to “cope with long sentences, especially those that are longer than the
sentences in the training corpus” (Bahdanau et al., 2015).

A first solution for this problem was proposed by Bahdanau et al.
(2015). The intuition behind the proposed solution is simple: instead of
providing the decoder a single vector c that encodes the entire source
sentence, the decoder receives a different encoding of the source text for
each decoded word. For example, following the example in Figure 14.1,
when decoding the word student in Romanian, the decoder benefits from
focusing on (or paying more attention to) the word student in the source
English text, rather than other parts of the text.

Figure 14.3 shows a more formal description of this attention-based
architecture. The first observation about this architecture is that its en-
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Figure 14.3 The architecture of a single decoder cell in a sequence-to-
sequence architecture with attention. The encoder for this architecture is
a bidirectional RNN that uses input word embedding xi for the source
word at position i and produces a hidden state hi. The decoder is a left-to-
right RNN. To avoid confusion between the source and target languages
we use yt to indicate the input representation of the target word decoded
at position t, and st to indicate the hidden state produced by the decoder
cell at position t. ct indicates the custom encoding vector of the source
text for position t in the decoder.

coder changes from a unidirectional RNN to a bidirectional one. Thus,
the hidden state hi generated for each word at position i in the source
text encodes context from both the left and the right of the current
word. Second, each cell at position t in the decoder RNN receives the
hidden state st−1 generated by the previous decoder cell (similar to the
architecture of Sutskever et al. (2014)), as well as a vector ct that pro-
vides an encoding of the source text that is customized for this position
in the decoder. The latter is the key contribution of this architecture.

The ct vector is computed as a weighted average of all hidden states
produced by the encoder on the source text, where the weights α used in
the average change for each position t during decoding. More formally:

ct =
∑
i

αtihi (14.1)

αti = softmax(sTt−1Wahi) (14.2)

Equation 14.1 computes the average of all hidden states in the input text,
where each hidden state is weighted by a parameter α. These weights
are computed in Equation 14.2 for each input token i and each decoded
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token t. The attention matrix Wa allows us to combine the last hidden
state of the decoder (st−1) with the hidden state of the corresponding
input token (hi), to produce a single scalar value that indicates how much
attention the decoded token t should pay to the input token i. The T

symbol in the equation indicates the transpose operation, which rotates
the st−1 vector 90◦ such that its rows become columns. This means
that, in order for the multiplications in Equation 14.2 to be valid, the
matrix Wa must have the same number of rows as the encoder’s hidden
state and the same number of columns as the number of rows of the
decoder’s hidden state. The attention matrix Wa is shared between the
decoder cells, and is trained jointly with the parameters of the encoder
and decoder. Lastly, the softmax function simply converts all α weights
to a probability distribution to be used in the actual weighted average
described in Equation 14.1.

Sidebar 14.2 Other strategies for modeling attention

Note that Equation 14.2 is not the only way to compute attention
weights. Luong et al. (2015) describe two other strategies that produce
good results empirically. The first is to simply skip the attention ma-
trix Wa completely and compute attention weights as dot products of
the two corresponding hidden states, i.e.: αti = softmax(sTt−1hi). For
this to work, the hidden states of the encoder and decoder must have
the same dimensions. The second strategy concatenates the two hidden
states into a single vector ([st−1;hi]). This vector then becomes the in-
put to an arbitrary feed-forward neural network with a single output
neuron that computes the attention weight. The advantage of the first
strategy is that it has fewer parameters to learn (because there is no
Wa matrix) and, thus, might be trained quicker, from smaller datasets.
The disadvantage is that it is less flexible than the method from Equa-
tion 14.2, which can learn more complex combination formulas due to the
additional attention matrix. The second strategy is more flexible than
Equation 14.2 due to the arbitrary neural network, but may introduce
more parameters than it, which may complicate training.

Bahdanau et al. (2015) have shown that their attention-based sequence-
to-sequence method produces better results than the previous method
of Sutskever et al. (2014). For example, they report a relative improve-
ment of 50% in BLEU score in an English-to-French machine translation
experiment over a vanilla sequence-to-sequence method without atten-
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Figure 14.4 Example of attention weights from (Bahdanau et al., 2015).
The x-axis corresponds to words in the source language (English); the y-
axis contains the decoder words from the target language (French). Each
cell visualizes an attention weight α between the corresponding words,
where black indicates 0 and white indicates 1.

tion. A qualitative analysis of the attention weights learned (of which
Figure 14.4 shows an example) indicates that the attention weights in-
deed learn to align decoded words with the corresponding source words,
even when the word order in the target language changes. For example,
Figure 14.4 shows that the French word zone is aligned mostly with the
English word Area even though the word order is different, i.e., in French
modifiers of nouns follow the noun rather than precede it, as in English.

14.4 Transformer-based Encoder-decoder
Architectures

The previous approach combines three relatively complex components:
two RNNs (one for the encoder and one for the decoder) and the at-
tention mechanism that connects the two. Vaswani et al. (2017) showed
that this architecture can be simplified based on the claim that “atten-
tion is all you need.” That is, they replaced the encoder/decoder RNNs
with distinct transformer layers that have their own self-attention, which
are then connected through another attention mechanism. For the en-
coding side, they used exactly the same transformer layers we discussed
in Chapter 12. The decoding blocks follow a similar architecture with
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Figure 14.5 Architecture of an individual transformer decoder layer. The
decoder layer follows closely the architecture of the encoder layer (see
Figure 12.3), but it includes two new components (shown in grey in the
figure): a component that implements an attention mechanism between
the encoded and the decoded texts, and an additional add-and-normalize
layer that normalizes the outputs of the encoder-decoder attention com-
ponent.

a few important additions (see Figure 14.5). Intuitively, this approach
replaces the RNN/attention combination of Bahdanau et al. (2015) with
three attention mechanisms:

Encoder self-attention: The input text is encoded with the same
stack of transformer layers introduced in Chapter 12, which
means that the output embeddings z for the source text are
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computed using the self-attention mechanism we discussed be-
fore.

Decoder self-attention: Similarly, the decoded text is fed to a distinct
stack of transformer layers that contain the same self-attention
mechanism as the encoder. However, since the decoding opera-
tion works left-to-right, the decoder only has information about
the words decoded so far. For example, when decoding the third
word in the example shown in Figure 14.5, the self-attention
mechanism can only use the words previously decoded (bank
and of ). The other entries reserved for the remaining text to
be decoded are masked, i.e., they are not used in any of the
operations in the decoder layer.

Encoder-decoder attention: Lastly, the transformer encoder-decoder
architecture includes an attention mechanism between the en-
coder and decoder layers, which, intuitively, serves the same
purpose as the attention approach introduced in the previous
section. This attention method is implemented very similarly to
the self-attention mechanism described in Chapter 12.1.2. The
key difference is that the query, key, and value vectors (qi, kj ,
and vj , respectively) are used to compute the attention weights
aij that align the decoded word at position i with the input
word at position j. Due to this, the query vector qi is computed
using the representation produced by the decoder for the word
at position i (i.e., the vector generated by the previous add-and-
normalize operation – see Figure 14.5), while the key and value
vectors kj and vj are computed using the output embedding
zj produced by the corresponding encoding layer for the input
token at position j.

Vaswani et al. (2017) showed that this encoder-decoder transformer
network, which relies heavily on attention while skipping sequence mod-
eling, performs better for machine translation than approaches that rely
on RNNs for encoding and decoding, including methods that couple
RNNs with attention, similar to the strategy we discussed in the pre-
vious section. However, for this improvement to be considerable, the
authors had to deploy a “big” transformer, i.e., one that had 6 stacked
layers for both encoder and decoder, produces a contextualized embed-
ding of dimension 1024 per token, and was trained for 300K steps (or
batches).
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14.5 Historical Background
Encoder-decoder approaches are a relatively recent addition to the ma-
chine learning landscape. Kalchbrenner and Blunsom (2013) were the
first to introduce a neural machine translation method that mapped the
entire input sentence into a single vector. However, their method relied
on vanilla recurrent neural networks, and suffered from the same vanilla
RNN limitations we discussed in Chapter 10. Sutskever et al. (2014)
replaced the building blocks in the above approach with LSTMs, and
showed that their sequence-to-sequence machine translation approach
achieves state-of-the-art results. Bahdanau et al. (2015) introduced the
attention mechanism we discussed in this chapter, which removed the
limitation that all decoded words must be generated using the same rep-
resentation of the entire input text. This motivated the design of trans-
former networks (Vaswani et al., 2017), which have since dominated the
natural language processing field.

14.6 References and Further Readings
While this chapter described key encoder-decoder approaches, one as-
pect we did not discuss is how to adjust the pre-training objectives to
address the distinct capabilities required by encoder-decoder tasks such
as machine translation. For example, the masked language model pre-
training objective we discussed in Chapter 12 is not multi-lingual. Fur-
ther, it does not capture how to align tokens from the source language
to tokens in the target language. We discuss pre-training objectives tai-
lored for machine translation in Chapter 16 where we discuss natural
language processing applications (Raffel et al., 2020; Xue et al., 2020).

14.7 Summary
This chapter introduced three encoder-decoder architectures, which en-
able important NLP applications such as machine translation. In partic-
ular, we discussed the sequence-to-sequence method of Sutskever et al.
(2014), which couples an encoder LSTM with a decoder LSTM. We fol-
lowed this method with the approach of Bahdanau et al. (2015), which
extend the previous decoder with an attention component, which pro-
duces a different encoding of the source text for each decoded word.
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Lastly, we introduced the complete encoder-decoder transformer net-
work, which relies on three attention mechanisms: one within the encoder
(which we discussed in Chapter 12), a similar one that operates over de-
coded words, and, importantly, an attention component that connects
the input words with the decoded ones (which serves the same purpose
as the attention mechanism of Bahdanau et al. (2015)).
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Implementing Encoder-decoder Methods

In this chapter we implement a machine translation application as an ex-
ample of an encoder-decoder task. In particular, we build on pre-trained
encoder-decoder transformer models, which exist in the Hugging Face
library for a wide variety of language pairs. We first show how to use
one of these models out-of-the-box to perform translation for one of the
language pairs it has been exposed to during pre-training: English to
Romanian. Afterwards, we fine-tune the model to a new language com-
bination that is has not seen before: Romanian to English. In both use
cases, we use the T5 encoder-decoder model, which has been pre-trained
for several tasks, including machine translation (Raffel et al., 2020).
Please see Chapter 16 for a description of T5’s pre-training process. The
data for this task comes from the WMT 2016 dataset (Bojar et al., 2016),
which consists of English sentences aligned pairwise to German, Czech,
Russian, Finnish, Romanian, and Turkish. In this chapter we only use
the English-Romanian texts (in both directions).

15.1 Translating English to Romanian

As a first example, we use T5 to translate from English to Romanian,
which is one of the language pairs it has been exposed to during pre-
training. The code discussed in this section is available in the notebook
chap15_translation_en_to_ro.

Even though in this exercise we are not fine-tuning the model, we still
need to define a few hyper parameters to frame the task and help the
model understand how to work with the data:

252
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[2]: transformer_name = 't5-small'
source_lang = 'en'
target_lang = 'ro'
max_source_length = 1024
max_target_length = 128
task_prefix = 'translate English to Romanian: '
batch_size = 100

The above settings indicate that we use the t5-small model, a smaller
T5 variant, to minimize the amount of memory required. The source_lang
and target_lang variables define the direction of translation, i.e., from
English to Romanian. To keep our computing requirements small, we
limit the length of our input and output. That is, English text longer
than max_source_length tokens will be truncated. Further, we limit
our generated Romanian text to max_target_length. We chose a maxi-
mum target length of 128 tokens to limit the computational cost incurred
during text generation (recall that the text is generated one token at a
time).

The T5 models are trained to support multiple tasks such as transla-
tion and summarization (please see Chapter 16 for details). Thus, dur-
ing training and inference, the user must specify which task the model
should perform using a text prefix. Here we use the prefix "translate
English to Romanian: " to indicate that the input text is in English
and should be translated to Romanian.

Next, we load the model and the corresponding tokenizer, and move
them to the GPU if one is available:

[3]: from transformers import AutoTokenizer,␣
↪→AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.
↪→from_pretrained(transformer_name)
model = AutoModelForSeq2SeqLM.

↪→from_pretrained(transformer_name)
model = model.to(device)

We use the datasets library to load our translation dataset. Note that
the first time one calls load_dataset() the dataset will be downloaded
automatically from the Hugging Face repository.1 The load_dataset()
1 https://huggingface.co/datasets/wmt16

https://huggingface.co/datasets/wmt16
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function takes a dataset name and configuration, which in our case are
wmt16 and ro-en, respectively. Since in this example we are only evalu-
ating the model, we only load the test partition (or split) of the dataset:

[4]: from datasets import load_dataset

test_ds = load_dataset('wmt16', 'ro-en', split='test')
test_ds

[4]: Dataset({
features: ['translation'],
num_rows: 1999

})

The dataset consists of a single column called translation. Each
element in this column is a dictionary that contains the aligned pair.
The dictionary keys are the abbreviated language names and the values
are the corresponding sentences. An example of one of these dictionaries
is shown below:

[5]: test_ds['translation'][0]

[5]: {'en': 'UN Chief Says There Is No Military Solution in␣
↪→Syria',
'ro': 'Șeful ONU declară că nu există soluții militare␣
↪→în Siria'}

We encapsulate the logic for translating the English text into Ro-
manian in a function called translate(). Inside this function, for a
batch of aligned pairs, we select the English sentence as our input, and
prepend the task prefix. Then we tokenize these inputs, including the
prefix, specifying that sentences longer than max_source_length should
be truncated, the batch should be padded, and the tokenizer should re-
turn PyTorch tensors.

Once the tokenizer output has been moved to the GPU, we pass it
to the model’s generate() method. This is the first time we have seen
this method, because only decoder and encoder-decoder models support
it. This method generates an output sequence by predicting one token
at a time, stopping when either the end-of-sequence token is produced
or when the sequence reaches a maximum length. Several generation
techniques are supported, such as beam search, in which several alternate
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translations are maintained by the model so that it is able to select an
overall best translation from several options. For efficiency purposes, we
use a greedy approach, which chooses the best token at each step of the
generation. This is equivalent to using a beam search with a beam of
size one.

Since the model generates its predictions as a sequence of token ids,
we need to convert them back into the corresponding tokens to be able to
read the translated text. We do this using the tokenizer’s batch_decode()
method. Finally, we return the gold and predicted Romanian sentences
in a dictionary:

[6]: def translate(batch):
# get source language examples and prepend task␣

↪→prefix
inputs = [x[source_lang] for x in␣

↪→batch["translation"]]
inputs = [task_prefix + x for x in inputs]

# tokenize inputs
encoded = tokenizer(

inputs,
max_length=max_source_length,
truncation=True,
padding=True,
return_tensors='pt',

)

# move data to gpu if possible
input_ids = encoded.input_ids.to(device)
attention_mask = encoded.attention_mask.to(device)

# generate translated sentences
output = model.generate(

input_ids=input_ids,
attention_mask=attention_mask,
num_beams=1,
max_length=max_target_length,

)
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# generate predicted sentences from predicted token␣
↪→ids

decoded = tokenizer.batch_decode(
output,
skip_special_tokens=True,

)

# get gold sentences in target language
targets = [x[target_lang] for x in␣

↪→batch["translation"]]

# return gold and predicted sentences
return {

'reference': targets,
'prediction': decoded,

}

Next, we apply our translate() function to our Dataset to translate
all the sentences:

[7]: results = test_ds.map(
translate,
batched=True,
batch_size=batch_size,
remove_columns=test_ds.column_names,

)

results.to_pandas()
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reference prediction

0 Șeful ONU declară că nu există soluții militar... eful ONU declară că nu există o soluţie milita...

1 Secretarul General Ban Ki-moon afirmă că răspu... Secretarul General Ban Ki-moon declară că răsp...

2 Șeful ONU a solicitat din nou tuturor părților... eful U.N. a cerut din nou tuturor partidelor, ...

3 Ban a declarat miercuri în cadrul unei conferi... Ban a declarat la o conferinţă de presă susţin...

4 Ban și-a exprimat regretul că divizările în co... El şi-a exprimat regretul că diviziunile din c...

... ... ...

1994 Nu sunt bani puțini. Banii sunt suficienţi.

1995 Uneori mi-e rușine să ridic banii de la casierie. Uneori mi-e ruşine să iau banii de la biroul c...

1996 La sfârșitul mandatului voi face un raport cu ... La sfârşitul biroului voi raporta tot ceea ce ...

1997 S-a întâmplat să ridic într-o lună și 30.000 d... Într-o lună am adunat 30 000 de lei cu ramburs...

1998 "Să spună un parlamentar că nu-i ajung banii e... "A spune că un parlamentar nu are suficienţi b...

1999 rows × 2 columns

We evaluate the quality of these translations using the BLEU metric,
which we introduced in Chapter 14. To this end, we load an existing im-
plementation of BLEU from the datasets library as a Metric object.2
Metric objects have a method called add(), which is used to accumulate
the predictions and gold labels, one example at a time. After accumu-
lating all examples, the compute() method returns the results of the
evaluation. Note that for each predicted sentence, BLEU expects a list
of reference sentences (as there are often many correct ways of translat-
ing a given text). Since we only have one reference, we wrap it in a list
before passing it to the metric:

[8]: from datasets import load_metric

metric = load_metric('sacrebleu')

for r in results:
prediction = r['prediction']
reference = [r['reference']]
metric.add(prediction=prediction,␣

↪→reference=reference)

metric.compute()

2 https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/main_
classes#datasets.Metric

https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/main_classes#datasets.Metric
https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/main_classes#datasets.Metric
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[8]: {'score': 25.18405390123436,
'counts': [27521, 14902, 8681, 5141],
'totals': [49236, 47237, 45240, 43245],
'precisions': [55.89609229019417,
31.547304020153693,
19.188770999115828,
11.888079546768413],

'bp': 1.0,
'sys_len': 49236,
'ref_len': 48945}

The score corresponds to the BLEU score. The rest of the items
correspond to the components required to compute the score. That is,
the counts, totals, and precisions correspond to the counts, totals,
and precisions for 1-, 2-, 3-, and 4-grams. The bp is the brevity penalty.
The sys_len and ref_len correspond to the predictions and reference
lengths.

The above BLEU score of 25.2% is slightly lower than the state of the
art, but we are being penalized by the peculiarities of diacritic usage in
Romanian characters. For example, the letters ș and ț (corresponding to
the sounds sh and ts in English) are usually spelled with a comma below
the characters s and t, which is the standard imposed by the Romanian
Academy. However, in “the wild” these characters are often written us-
ing a cedilla instead of a comma, e.g., ţ instead of ț (or, using the names
of these Unicode characters, LATIN SMALL LETTER T WITH CEDILLA in-
stead of LATIN SMALL LETTER T WITH COMMA BELOW). Further, some of
these characters with diacritics are often omitted altogether in the T5
output. The T5 output below contains an example for each of these two
situations (e.g., soluţi(e) instead of soluți(i), and eful instead of Șeful):

[9]: results[0]

[9]: {'reference': 'Șeful ONU declară că nu există soluții␣
↪→militare în Siria',
'predicted': 'eful ONU declară că nu există o soluţie␣
↪→militară în Siria'}

To avoid being penalized at scoring time for these arbitrary discrep-
ancies, post-processing scripts are sometimes used to normalize diacritic
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usage.3 Usage of such post-processing scripts can improve the BLEU
score substantially. However, this is beyond the scope of this chapter.

15.2 Implementation of Greedy Generation
To gain a better intuition of how the encoder-decoder model generates
its output sequence, we show below an implementation of the greedy
version of the generate() method used above. This function takes as
an argument a single English text (i.e., no batching) and returns the
corresponding Romanian text:

[10]: def greedy_translation(text):
# prepend task prefix
text = task_prefix + text

# tokenize input
encoded = tokenizer(

text,
max_length=max_source_length,
truncation=True,
return_tensors='pt',

)

# encoder input ids
encoder_input_ids = encoded.input_ids.to(device)

# decoder input ids, initialized with start token id
start = model.config.decoder_start_token_id
decoder_input_ids = torch.LongTensor([[start]]).

↪→to(device)

# generate tokens, one at a time
for _ in range(max_target_length):

# get model predictions
output = model(

encoder_input_ids,
decoder_input_ids=decoder_input_ids,

3 https://github.com/huggingface/transformers/blob/main/examples/legacy/
seq2seq/romanian_postprocessing.md

https://github.com/huggingface/transformers/blob/main/examples/legacy/seq2seq/romanian_postprocessing.md
https://github.com/huggingface/transformers/blob/main/examples/legacy/seq2seq/romanian_postprocessing.md
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)
# get logits for last token
next_token_logits = output.logits[0, -1, :]
# select most probable token
next_token_id = torch.argmax(next_token_logits)
# append new token to decoder_input_ids
output_id = torch.LongTensor([[next_token_id]]).

↪→to(device)
decoder_input_ids = torch.cat(

[decoder_input_ids, output_id],
dim=-1,

)
# if predicted token is the end of sequence,␣

↪→stop iterating
if next_token_id == tokenizer.eos_token_id:

break

# return text corresponding to predicted token ids
return tokenizer.decode(

decoder_input_ids[0],
skip_special_tokens=True,

)

This function interacts directly with the encoder and decoder compo-
nents of the T5 model, so we must construct the input for both. The
encoder’s input is constructed by prepending the task prefix to the En-
glish text and tokenizing it. On the other hand, the decoder’s input is
constructed incrementally by accumulating the tokens predicted so far
in order to predict the next token in the sequence. At the beginning,
before any tokens are predicted, the decoder’s input is initialized with
a single token that corresponds to the beginning of the sequence. We
retrieve this token, called decoder_start_token_id, from the model’s
configuration object.

The tokens are predicted one at a time, until the model produces
eos_token_id, which indicates that the sequence is finished. However,
in case the model does not produce this end-of-sequence token within
a reasonable number of steps, we also enforce a maximum number of
predicted tokens, determined by the max_target_length parameter we
defined previously. The T5 model’s forward() method, called indirectly
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through its __call__()) method, takes the inputs for both the encoder
and the decoder. The output returned by this method corresponds to all
the tokens in the decoder’s input plus an extra one: the newly predicted
token. To select the best prediction, we retrieve the logits from the out-
put and select the logits corresponding to the last token in the sequence
(recall that the output shape is (batch size, sequence length, vocabulary
size)). From these selected logits, we use the argmax() to select the to-
ken id corresponding to the highest-scoring vocabulary item. We append
this new token id to the decoder’s input, and repeat the process until
we encounter the end-of-sequence token or the decoded text reaches the
maximum length.

Once we are finished generating token ids, we retrieve the correspond-
ing text by calling the tokenizer’s decode() method. This method is
identical to the batch_decode() method we used previously, except
that it only decodes a single example.

Below is an usage example for the greedy_translation() function:

[11]: greedy_translation("this is a test")

[11]: 'Acesta este un test'

15.3 Fine-tuning Romanian to English Translation
In this section, we fine-tune a T5 model on the translation of Romanian
to English, a language pair that was not included in the T5 pre-training.
To confirm that this data was not included in pre-training, we evalu-
ated the performance of the vanilla t5-small model on the translation
from Romanian to English using code equivalent to the code discussed
in the previous section (see the chap15_translation_ro_to_en note-
book). The resulting BLEU score was only 3.2%, which is substantially
lower than the score we obtained when translating English to Romanian
(25.2%).

Note that the transformers library includes scripts to fine-tune a trans-
lation model directly from the command line.4 For didactic purposes, we
will not use these scripts in this section, but instead write the fine-tuning
code explicitly.

For this exercise, we continue using the WMT16 dataset, but this time
4 https://github.com/huggingface/transformers/tree/main/examples/pytorch/

translation

https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation
https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation
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we load the train and validation splits. We employ the same t5-small
model that we used previously. The code from the last section to load
the model, tokenizer, and dataset does not need to change for this use-
case, so we do not repeat it here. However, as before, the complete code is
available in a Jupyter notebook (chap15_translation_ro_to_en_finetune).

We begin by tokenizing the source (Romanian) and target language
(English) texts. As in the last section, we need to prepend the task prefix
to the source texts prior to tokenizing. This time, since we are translating
in the opposite direction, we use the prefix "translate Romanian to
English: ", and we prepend it to the Romanian text.

Each call to the tokenizer with a batch of texts produces input_ids
and an attention_mask. This output is what we need for the Roma-
nian text, which will serve as the input to the model. To generate the
labels, i.e., the correct translated tokens, we use the input_ids corre-
sponding to the English text. Recall that "labels" is the default key
name expected by trainers in Hugging Face.

[5]: def tokenize(batch):
# get source sentences and prepend task prefix
sources = [x[source_lang] for x in␣

↪→batch["translation"]]
sources = [task_prefix + x for x in sources]
# tokenize source sentences
output = tokenizer(

sources,
max_length=max_source_length,
truncation=True,

)

# get target sentences
targets = [x[target_lang] for x in␣

↪→batch["translation"]]
# tokenize target sentences
labels = tokenizer(

targets,
max_length=max_target_length,
truncation=True,

)
# add targets to output
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output["labels"] = labels["input_ids"]

return output

We apply our tokenize() function to both the train and validation
splits:

[6]: train_dataset = wmt16['train']
eval_dataset = wmt16['validation']
column_names = train_dataset.column_names

train_dataset = train_dataset.map(
tokenize,
batched=True,
remove_columns=column_names,

)

eval_dataset = eval_dataset.map(
tokenize,
batched=True,
remove_columns=column_names,

)

train_dataset.to_pandas()
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input_ids attention_mask labels

0
[13959, 3871, 29, 12, 1566, 10, 4961,

106, 204...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[19428, 13, 12876, 10, 217, 13687, 7,

1]

1
[13959, 3871, 29, 12, 1566, 10, 5085,

5840, 49...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[2276, 8843, 138, 13, 13687, 7, 13,

1767, 3823...

2
[13959, 3871, 29, 12, 1566, 10, 4961,

106, 204...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[19428, 13, 12876, 10, 217, 13687, 7,

1]

3
[13959, 3871, 29, 12, 1566, 10, 781,

8750, 9, ...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[781, 2420, 13, 17500, 10, 217, 13687,

7, 1]

4
[13959, 3871, 29, 12, 1566, 10, 374,

6225, 49,...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[11167, 7, 1204, 10, 217, 13687, 7, 1]

... ... ... ...

610315
[13959, 3871, 29, 12, 1566, 10, 4540,

4031, 9,...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[4540, 4031, 9, 7, 1672, 7, 2262, 900,

17, 38,...

610316
[13959, 3871, 29, 12, 1566, 10, 2364,

4540, 40...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[242, 4540, 4031, 9, 7, 6, 8, 516, 65,

66, 8, ...

610317
[13959, 3871, 29, 12, 1566, 10, 2262,

900, 17,...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[2262, 900, 17, 641, 65, 46, 3761, 6,

1069, 31...

610318
[13959, 3871, 29, 12, 1566, 10, 3,

25882, 759,...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[9810, 157, 31, 7, 516, 92, 3088, 21,

46, 3839...

610319
[13959, 3871, 29, 12, 1566, 10, 18420,

83, 362...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, ...
[3625, 32, 5788, 35, 15, 3844, 31, 7, 3,

16143...

610320 rows × 3 columns

Recall that in order to construct a trainer, we need a data colla-
tor for batching, a function to compute the metrics of interest, and
a TrainingArguments object. In this section, we use a data collator
called DataCollatorForSeq2Seq, which is included in the transformers
library specifically for sequence-to-sequence models. The collator pads
the batches using the label_pad_token_id, which we have set to −100,
as we did in Chapter 13 (this is the default ignore_index value used
by CrossEntropyLoss):

[8]: from transformers import DataCollatorForSeq2Seq

label_pad_token_id = -100

data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,

)

The compute_metrics() function computes the BLEU score. It uses
the tokenizer to decode the token ids into text, for both the predicted
and gold labels, ignoring padding:
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[9]: from datasets import load_metric

metric = load_metric('sacrebleu')

def compute_metrics(eval_preds):
preds, labels = eval_preds
# get text for predictions
predictions = tokenizer.batch_decode(

preds,
skip_special_tokens=True,

)
# replace -100 in labels with pad token
labels = np.where(

labels != label_pad_token_id,
labels,
tokenizer.pad_token_id,

)
# get text for gold labels
references = tokenizer.batch_decode(

labels,
skip_special_tokens=True,

)
# metric expects list of references for each␣

↪→prediction
references = [[ref] for ref in references]

# compute bleu score
results = metric.compute(

predictions=predictions,
references=references,

)

return {'bleu': results['score']}

We use the Seq2SeqTrainingArguments class, which adds the predict_with_generate
parameter to the regular TrainingArguments class. This is needed to in-
dicate that the trainer should use the generate() method for inference
in order to compute the metrics (BLUE in this case):
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[10]: from transformers import Seq2SeqTrainingArguments

training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
save_steps=save_steps,
predict_with_generate=True,
evaluation_strategy='steps',
eval_steps=save_steps,
learning_rate=learning_rate,
num_train_epochs=num_train_epochs,

)

Finally, we construct the trainer using the Seq2SeqTrainer class,
which is a subclass of Trainer that adds the ability to compute scores
such as BLEU during training by calling generate() during evaluation:

[11]: from transformers import Seq2SeqTrainer

trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,

)

Fine-tuning a translation model takes considerably longer than train-
ing or fine-tuning the models we have developed so far in this book.
To account for this, here we add support for resuming training from a
checkpoint, i.e., a model that was saved after training on a number of
examples. Similar to how one can resume a video game, this allows one
to pick up from the last “save point,” in case training was interrupted
and needs to be resumed:

[12]: import os
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from transformers.trainer_utils import␣
↪→get_last_checkpoint

last_checkpoint = None
if os.path.isdir(output_dir):

last_checkpoint = get_last_checkpoint(output_dir)

if last_checkpoint is not None:
print(f'Checkpoint detected at {last_checkpoint}.')

When calling the trainer’s train() method, we either provide a model
checkpoint or None. In the former case, the trainer will continue training
from the provided checkpoint. In the latter case, the trainer will begin
training from scratch. Once the training has completed, we save the
trained model and tokenizer using the trainer’s save_model() method
into the output directory:

[13]: train_result = trainer.
↪→train(resume_from_checkpoint=last_checkpoint)
trainer.save_model()

We then compute and save the metrics corresponding to the training
partition. This is not required, but it is helpful to keep a record of the
model’s performance on the training data. Note that the metrics do not
automatically include the number of examples in the training partition,
so we add them explicitly:

[14]: metrics = train_result.metrics
metrics['train_samples'] = len(train_dataset)
trainer.save_metrics('train', metrics)
trainer.save_state()

Next, we evaluate our final model on the validation data and save
the corresponding metrics. These metrics indicate that our BLEU score
on the validation data is 35.2%, which is evidence that fine-tuning has
helped dramatically:

[15]: metrics = trainer.evaluate(
max_length=max_target_length,
num_beams=num_beams,
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metric_key_prefix='eval',
)

metrics['eval_samples'] = len(eval_dataset)

trainer.log_metrics('eval', metrics)
trainer.save_metrics('eval', metrics)

***** eval metrics *****
epoch = 3.0
eval_bleu = 35.1923
eval_loss = 1.4452
eval_runtime = 0:01:50.71
eval_samples = 1999
eval_samples_per_second = 18.055
eval_steps_per_second = 4.516

Lastly, we save a model card into our output directory. A model card
is akin to an automatically-generated README file that includes infor-
mation about the model used, the data, settings used, and performance
throughout the training process. This file is helpful for reproducibility as
it contains all of this key information in one place. These cards are often
uploaded to the Hugging Face Hub together with the model itself.5

[16]: kwargs = {
'finetuned_from': transformer_name,
'tasks': 'translation',
'dataset_tags': dataset_name,
'dataset_args': dataset_config_name,
'dataset': f'{dataset_name} {dataset_config_name}',
'language': [source_lang, target_lang],

}
trainer.create_model_card(**kwargs)

5 We do not discuss the model uploading process here. Please see the
documentation on model sharing at:
https://huggingface.co/docs/transformers/v4.14.1/model_sharing.

https://huggingface.co/docs/transformers/v4.14.1/model_sharing
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15.4 Using a Previously Saved Model
Models that have been saved locally can be loaded using the same
from_pretrained() methods we have used before. In particular, instead
of providing a model name, we provide the path to the local directory
where the model is stored, using the local_files_only parameter to
indicate that we want to load the model from the local file system in-
stead of downloading it from the Hugging Face Hub (Make sure you use
an output directory that is valid on your machine!):

[3]: from transformers import AutoTokenizer,␣
↪→AutoModelForSeq2SeqLM

output_dir = '/media/data2/t5-translation-example'
tokenizer = AutoTokenizer.from_pretrained(

output_dir,
local_files_only=True,

)
model = AutoModelForSeq2SeqLM.from_pretrained(

output_dir,
local_files_only=True,

)
model = model.to(device)

Once our fine-tuned model is loaded, we use it the same way as be-
fore. That is, we use the translate() function to generate translations
for our test partition. Then we use the BLEU metric to score this out-
put. From this metric, we obtain the final BLEU score of 33.4%, which
is markedly better than our initial score (i.e., without fine-tuning) of
3.2%! The code corresponding to this section is available in the note-
book chap15_translation_ro_to_en_finetuned.

15.5 Summary
In this chapter we used a complete encoder-decoder transformer network
to implement a machine translation application. Importantly, transform-
ers with a decoder component have a generate() method that simplifies
the generation process and provides multiple options for decoding. We
encourage you to explore these options! For example, try comparing the
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quality of the output with the resources required to produce it (e.g., run-
time overhead) when the size of the search beam increases. Additionally,
we saw how to fine-tune an encoder-decoder model on a new language
pair that it has not seen during its pre-training. This exercise included
using checkpoints to support resuming training in case of unexpected
interruptions, saving our fine-tuned model, and loading it for later use.



16
Neural Architectures for NLP Applications

So far, we have discussed neural architectures such as feed-forward neu-
ral networks, recurrent neural networks, and transformer networks, and
have exemplified how they can be used to implement a few applications of
natural language processing such as text classification and part-of-speech
(POS) tagging. In this chapter, we describe several common applications
(including the ones we touched on before) and multiple possible neural
approaches for each. It is important to note that research on how to
improve these methods is ongoing and exciting new methods continue
to be proposed. However, given the scope of this book, we focus on sim-
ple neural approaches that work well and should be familiar to anybody
beginning research in NLP or interested in deploying robust strategies
in industry.

16.1 Text Classification
Text classification is one of the most widely used applications of natural
language processing due to its many real-world uses such as sentiment
analysis (Pang et al., 2008; Socher et al., 2013), product reviews (Maas
et al., 2011), news classification (Zhang et al., 2015), or classifying user
intent in search queries (Li and Roth, 2002).

Because of its ubiquity in the real world and also its relative simplicity,
we used text classification as a walkthrough example in the first chapters
of the book (until Chapter 9, and then again in Chapter 13). However, to
facilitate non-linear reading, we summarize below three common neural
architectures for text classification.

The first is deep averaging networks (DAN) (Iyyer et al., 2015), il-
lustrated in Figure 16.1. This architecture is the neural equivalent of

271
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Figure 16.1 Deep averaging network (DAN) for text classification.

a bag-of-words approach for text classification. That is, this approach
takes as input a set of static embeddings (generated offline using an al-
gorithm similar to those covered in Chapter 8), which are then simply
averaged into a single vector. This average can theoretically be improved.
For example, one could remove words whose embeddings are likely to
be too noisy (because they appear in too many ambiguous contexts)
such as prepositions and determiners. One could apply the attention
mechanism discussed in Section 14.3 to turn the simple average into a
weighted one. What is important is that this averaging mechanism pro-
duces a single vector regardless of the number of input words. This is
useful, as it makes this architecture applicable to texts of any length.
The vector that stores the average of the input embeddings is followed
by one or more intermediate neural layers, which apply Equation 5.1
(hence the “deep” in the name), and one output layer, which produces
the output vector with one neuron per class. Please see Section 9.2 for
a complete PyTorch implementation of this architecture.

The second architecture for text classification, illustrated in Figure 16.2,
uses an acceptor bidirectional RNN (typically a bidirectional LSTM). In
this architecture, we use only the right-most hidden state of the left-
to-right RNN and the left-most hidden state of the right-to-left RNN.
These two vectors are then combined, either through concatenation or
averaging into a new vector, which is then fed to an output layer that
produces an output vector similar to the one in the previous architec-
ture. We challenge the curious reader to adapt the transducer RNN
implemented in Chapter 11 to this acceptor configuration! However, be
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Figure 16.2 An acceptor biRNN for text classification.

Figure 16.3 Transformer network for text classification.

advised that in the experience of the authors, RNNs seldom outperform
simpler bag-of-words architectures for text classification.

Lastly, Figure 16.3 shows how the (encoder of a) transformer net-
work can be used for text classification. As the figure illustrates, the
transformer network can be used immediately for text classification by
adding an output layer on top of the contextualized embedding of the
virtual [CLS] token. Please see Chapter 13 for an implementation of this
architecture. As our results in this chapter indicate, this simple exten-
sion of the transformer encoder achieves state-of-the-art results in our
multiclass text classification use case.
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16.2 Part-of-speech Tagging

Table 16.1 Universal part-of-speech tags.

Name Definition Description Example
English words

Open-class tags

ADJ Adjective Words that modify nouns and specify their properties blue, big

ADV Adverb Words that typically modify verbs, but can also modify adjec-
tives, and other adverbs

rapidly, very

INTJ Interjection Words typically used as exclamation or part of an exclamation ouch, hello

NOUN Noun Words denoting a person, place, thing, animal or idea dog, honesty

PROPN Proper noun (Part of the) name of an individual, place, or object Jane, IBM

VERB Verb Words that typically indicate events and actions, and can serve
as predicate in a sentence

eat, run

Closed-class tags

ADP Adposition Words that occur before (preposition) or after (postposition)
a complement composed of a noun phrase, noun, pronoun, or
clause that functions as a noun phrase

in, at

AUX Auxiliary Words that accompany lexical verbs to add grammatical dis-
tinctions

has, should

CCONJ Coordinating
conjunction

Words that link other words or larger constituents and, but

DET Determiner Words that modify nouns or noun phrases and express the
reference of the noun phrase

the, all

NUM Numeral Words functioning typically as a determiner, adjective or pro-
noun, that express a number

1, 3.14

PART Particle Words that must be associated with another word or phrase
to impart meaning, and that do not satisfy definitions of other
POS tags

’s, not

PRON Pronoun Words that substitute for nouns or noun phrases she, theirs

SCONJ Subordinating
conjunction

Conjunctions that link constructions by making one of them
a constituent of the other

that, if

Other

PUNCT Punctuation Non-alphabetical characters that delimit linguistic units ., ,

SYM Symbol Entities that differ from ordinary words by form and/or func-
tion

$, :)

X Other Words that cannot be assigned a real POS category blah, xyz

As we mentioned in Chapter 10, parts of speech (POS) are categories
of words that share similar grammatical properties, e.g., nouns or verbs.
POS tagging is the task that assigns these tags to words in a text.
Because POS tags are familiar to most readers, POS tagging is com-
monly used as an example of an NLP task that requires the modeling
of sequences. For example, for both English and Spanish, once we see a
determiner, it is much more likely that the next word will be a noun.
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In Spanish and Romanian, adjectives are likely to appear after a noun.
And so on. Importantly, the usefulness of POS tagging goes consider-
ably beyond this didactic use case. POS information has been shown
to improve several downstream tasks such as syntactic parsing (Collins,
1996; Kiperwasser and Goldberg, 2016; Vacareanu et al., 2020a) and
information extraction (Mintz et al., 2009; Valenzuela-Escárcega et al.,
2018).

While linguistic studies of parts of speech go back at least 2,500
years (Matilal, 1990), large datasets annotated with standardized POS
tags are relatively new. In 1964, the Brown corpus was made public
with approximately one million English words annotated with 87 POS
tags (Francis, 1964). Three decades later, (Marcinkiewicz, 1994) released
the Penn Treebank corpus, which contains over 4.5 million words of
American English annotated with a somewhat simpler set of 36 POS tags
and 12 other tags, for punctuation and currency symbols. These datasets
elicited several decades of work on machine learning approaches for POS
tagging, to the point where Manning (2011) suggested that “there is lim-
ited further mileage to be had […] from better machine learning.”

However, it was observed that the Penn Treebank POS tag set is too
fine grained to be applicable across languages (Petrov et al., 2011). For
example, the Penn Treebank uses six POS tags for verbs, which distin-
guish between different verb forms such as gerund and past participle,
some of which do not exist in many other languages. This research moti-
vated the creation of a “universal” set of coarser POS tags that are more
easily applicable across languages. Ultimately, this effort grew into the
Universal Dependencies project, which is a “framework for consistent
annotation of grammar (parts of speech, morphological features, and
syntactic dependencies) across different human languages” (Nivre et al.,
2016, 2020).1 Table 16.1 lists the universal part-of-speech tags used in
the latest iteration of Universal Dependencies project. As the table indi-
cates, these POS tags are split into three categories: (a) open-class tags,
which contain an unbounded number of words as new words belonging
to these categories are continuously being added to the language (e.g.,
new protein names are continuously created as our understanding of
molecular biology improves), (b) closed-class tags, which contain a fixed
number of words (e.g., the number of prepositions in most languages is
finite and reasonably small), and (c) other tags, which contain punctu-
ation signs, symbols such as currency, and other words that do not fit

1 https://universaldependencies.org

https://universaldependencies.org
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Figure 16.4 A bidirectional transducer RNN for sequence modeling.

Figure 16.5 Transformer network for sequence modeling.

anywhere else. Importantly, these tags are coarser than the older Brown
of Penn Treebank tags. For example, there is a single POS tag for verbs
rather than six as in the Penn Treebank.

POS tagging is commonly implemented with transducer RNNs (Fig-
ure 16.4) or transformer networks (Figure 16.5). Both these methods fol-
low typical transducer settings, as described in Chapters 10 and 12. That
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is, they include an output layer on top of the hidden states correspond-
ing to each word, which projects the corresponding representations into
a vector with one neuron per POS tag. We provide implementations of
both these architectures in Chapters 11 and 13, respectively. One subtle
but important difference between the two architectures is that trans-
former networks operate on top of sub-word units that are generated by
the BPE tokenizer (see Section 12.2 for details on this algorithm) rather
than the actual words annotated in the dataset. Thus, one has to map
the POS tags from words to sub-words before training, and in the op-
posite direction (from sub-words to words) when applying the resulting
model to new texts. The strategy recommended by Devlin et al. (2018)
is to transfer the word labels to the first sub-words only, and ignore the
other sub-words. For example, assume the word playing is annotated as
VERB in some training sentence and the underlying transformer breaks
it down into two sub-word units: play and ing. In this case, the first sub-
word, play, receives the label VERB. The second sub-word, ing, will not
be included in the loss computed for the corresponding sequence (i.e.,
the sum of the cross entropy losses for the annotated sub-words).2 At
testing time, the opposite process is required, e.g., the label assigned to
the first sub-word (play) becomes the label of the whole word (playing);
all other sub-word labels are ignored.

Lastly, the two architectures shown in Figures 16.4 and 16.5 do not
use the conditional random fields layer discussed in Section 10.5. Recall
that unlike the simple architectures discussed above, which maximize
the probability of the correct label assignment for each individual to-
ken, the CRF maximizes the probability of the entire correct sequence of
labels. The latter probability combines label emission probabilities for in-
dividual tokens with transition probabilities between pairs of consecutive
labels. In the authors’ experience, this CRF layer does not bring a con-
siderable performance boost on large datasets, e.g., the Penn Treebank,
where there is enough data to implicitly capture transition information
in the underlying RNN or transformer network. But the CRF layer does
help on smaller datasets common for under-represented languages or
under-resourced tasks such as the ones discussed in the next section.
We challenge the intrepid reader to extend the two architectures imple-
mented in Chapters 11 and 13 with the CRF layer from Section 10.5!

2 As we showed in Chapter 13, this can be achieved in PyTorch by setting the
label of the token to be ignored to -100.
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16.3 Named Entity Recognition

Named entities are phrases that contain names of people, organizations,
locations, etc. (Tjong Kim Sang, 2002; Tjong Kim Sang and De Meulder,
2003). For example, in the sentence Ion Jinga moves to New York to
start his U.N. position, Ion Jinga is a person name, New York is a
location name, and, lastly, U.N. is an organization name. The task of
named entity recognition (NER) identifies the boundaries of such names
and labels them accordingly. Note that the NER task is not always
as simple as the above example suggests. For example, in the artificial
sentence George Washington is revered not only by Washington officials,
but also by most of the population in Washington D.C., the same word
(Washington) appears as part of a person name (George Washington),
organization name (the second instance of Washington represents the
U.S. federal government), and location name (Washington D.C.).

Further, there is no wide agreement on what types of names a NER
system should recognize. For example, the shared tasks organized by the
Computational Natural Language Learning (CoNLL) conference (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003) recognize four
types of names: persons, organizations, locations, and miscellaneous,
which is a catchall for other names such as gentilics (e.g., Spanish),
names of works of art (e.g., Purple Haze), names of diseases (e.g., Bovine
Spongiform Encephalopathy), and names of gods (e.g., Zeus). Stanford’s
CoreNLP NER system (Finkel et al., 2005) diverges from this by in-
cluding also numeric entities such as dates, times of day, and monetary
values. Ling and Weld (2012)’s FIGER, which stands for fine grained
entity recognition, expands the set of names into a taxonomy contain-
ing 112 types. For example, locations are refined into cities, counties,
countries, etc. Other efforts adapted the NER tasks to domain-specific
problems such as the recognition of gene names (Smith et al., 2008).
Nevertheless, in open-domain settings, it seems that the CoNLL repre-
sentation is the one most widely used. For this reason, we will use it as
the walkthrough example in this section.

Similar to POS tagging, the NER task requires the modeling of con-
text. For example, one can immediately infer that the blank in mayor of
____ is probably a city name based on the two preceding words. Thus,
NER commonly uses very similar architectures to the ones we discussed
for POS tagging (Figures 16.4 and 16.5). However, the NER methods
built on top of these architectures tend to differ from POS tagging in
two significant ways.
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Table 16.2 Example annotations for the BIO, IO, and BILOU
annotation schemas, and the CoNLL named entity types. Because in
the IO representation the only label prefix is I-, it sometimes omitted

completely, e.g., I-PER becomes PER. We show the prefix here for
clarity.

Sentence BIO Annotation IO Annotation BILOU Annotation

Jane B-PER I-PER B-PER
Smith I-PER I-PER L-PER
and O O O
her O O O
spouse O O O
John B-PER I-PER U-PER
like O O O
to O O O
visit O O O
Trinidad B-LOC I-LOC B-LOC
and I-LOC I-LOC I-LOC
Tobago I-LOC I-LOC L-LOC
. O O O

First, NER methods are more likely to use a CRF layer on top of the
underlying RNN or transformer network than POS tagging approaches.
This is possibly because the common NER datasets such as the ones
from the CoNLL 2002 and 2003 shared tasks are considerably smaller
than POS tagging datasets. For example, the English NER from 2003
CoNLL shared task is approximately four times smaller than the Penn
Treebank POS dataset. Because of their relatively smaller sizes, it is
possible that the RNNs and transformer networks struggle more to cap-
ture information on the valid transitions allowed. On the other hand, the
CRF, which model transition information explicitly, are more likely to
learn quicker. For example, the authors’ implementation of the popular
LSTM-CRF architecture (Lample et al., 2016) obtains a 4% F1 per-
formance boost from the CRF component on the 2003 CoNLL English
NER task, but only a couple of decimal points for POS tagging on the
larger Penn Treebank dataset.

Second, while POS tags apply to individual words, named entities
are commonly multi-word phrases, which must be recognized as a sin-
gle unit. To capture multi-word names, Ramshaw and Marcus (1999)
proposed the IOB (or BIO) notation, which introduces three types of la-
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bels: (a) O indicates words that are outside named entity mentions, (b)
B-CLASS indicates that this word begins a new named entity mention of
type CLASS (e.g., B-PER indicates the beginning of a new person name in
the CoNLL datasets), and I-CLASS indicates that this word is inside (or
continues) a named entity mention of type CLASS (e.g., I-PER indicates
a word that continues a person’s name in CoNLL). The second column
in Table 16.2 shows the BIO labels assigned to the sentence listed in the
first column. Finkel et al. (2005) observed that the distinction between
B- and I- prefixes is linguistically relevant only when two named entity
mentions are immediately next to each other in text, and it is important
to understand where the second mention starts. However, because such
situations are extremely unlikely (at least in English and most European
languages), they merged the two prefixes to simplify the NER task. For
example, for CoNLL named entity types, merging B- and I- prefixes
reduces the label space from 1 + 4 × 2 = 9 to 1 + 4 × 1 = 5. The third
column in Table 16.2 shows the IO labels assigned to the same sentence.
Interestingly, Ratinov and Roth (2009) argued for increasing the num-
ber of labels as this would produce “a more expressive model.” They
proposed the BILOU representation, which adds two new label types
over BIO: (a) L-CLASS, which indicates that last token in a multi-word
named entity mention of type CLASS, and (b) U-CLASS, which indicates
that the corresponding word is the unique token in this named entity
mention. An example of this annotation is shown in the fourth column
in Table 16.2. Using an NER approach without the CRF layer, Ratinov
and Roth (2009) reported that the BILOU schema yields better results
that BIO on two NER datasets. However, in general, the jury is still
out on the best NER annotation schema. It is likely that the best choice
is impacted by the underlying NER architecture, size of the training
dataset, and the types of annotated named entities.3

16.4 Dependency Parsing
Teaching computers to understanding the syntactic structure of sen-
tences is crucial for many natural language processing applications in-
cluding sentiment analysis (Greene and Resnik, 2009), information ex-
traction (Bunescu and Mooney, 2005; Moschitti, 2006), question an-
swering (Cui et al., 2005; Surdeanu et al., 2011), and machine transla-
tion (Charniak et al., 2003; Galley and Manning, 2009). While sentential
3 This debate yielded some lively coffee breaks at NLP conferences.
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Figure 16.6 A sample sentence parsed with universal dependencies.

syntax can be represented using different formalisms, in this book we fo-
cus on dependency grammars, which describe these syntactic structures
using directed, binary dependency relations between words. For exam-
ple, in the sentence John loves Mary, there is a subject dependency
between the verb loves and the noun John, and an object dependency
between loves and Mary.

As did the part-of-speech tag representations from Section 16.2, language-
specific dependency representations (De Marneffe and Manning, 2008;
Surdeanu et al., 2008; Hajic et al., 2009) evolved into language-independent
universal dependencies (Nivre et al., 2016, 2020). For example, the sec-
ond version of the universal dependencies project uses a set of 37 depen-
dency types to represent syntactic structures for over 150 languages (Nivre
et al., 2020).

Table 16.3 shows a few of the universal dependency types. Figure 16.6
shows a sentence parsed with these dependencies. In general, universal
dependencies (as well as most other dependency representations) have
several important properties:

• They are binary relations between a dominant word (commonly called
head) and another word that immediately depends on it (known as
modifier or dependent). To capture the fact that one word dominates
the other, these relations are directed from the head to the modifier.
For example, in Figure 16.6 there is a directed relation from the verb
gave and its object, book.

• These relations are labeled with the syntactic function they capture.
For example, the relation between gave and book is labeled obj to
indicate that the noun serves as the object of the verb.

• In general, these relations may create various sentential structures
such as directed graphs or trees. However, in practice most datasets
annotate the syntactic structures of sentences as dependency trees.
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Table 16.3 Some universal dependency types from
https://universaldependencies.org/u/dep/all.html. See this

URL for the complete list of dependency types.

Name Definition Description
Core arguments

nsubj Nominal
subject

Relation between the verb of a clause and the nomi-
nal that is the syntactic subject and the proto-agent
of the clause.

obj Object Relation between the verb and its object, i.e., the
entity being acted upon or which undergoes a change
of state or motion.

iobj Indirect
object

Relation between the verb and its indirect object,
which is a core argument but not a subject or object.

Non-core dependents

obl Oblique Relation between a verb/adjective/adverb and a
nominal (noun, pronoun, noun phrase) that func-
tions as a non-core (oblique) argument or adjunct.

Nominal dependents

det Determiner Relation that holds between a nominal and its deter-
miner.

case Case Relation used for any case-marking element which
is treated as a separate syntactic word (e.g., prepo-
sitions, postpositions). Case-marking elements are
treated as dependents of the noun they attach to
or introduce.

This means that each word has exactly one head, i.e., it serves as
modifier exactly once in a sentence. For example, the word book mod-
ifies gave and no other word in this sentence. To enforce this rule, the
dominant word in the sentence, i.e., the word that does not depend
grammatically on another word (typically the main verb in the sen-
tence such as gave in Figure 16.6), is marked as modifier for a virtual
token usually called root, which, as its name indicates, becomes the
root of the dependency tree.

Most dependency parsing algorithms fall into two classes: transition-
based or graph-based. The former class carries this name because these
algorithms rely on a stack of input words from which the syntactic struc-
ture of the sentence is incrementally built through a series of transition

https://universaldependencies.org/u/dep/all.html
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Figure 16.7 Dependency parsing as sequence modeling. The classifier that
predicts the relative position of the head token is shown in red; the clas-
sifier that predicts dependency labels is shown in cyan.

operations (Nivre, 2003; Ballesteros et al., 2017). For example, one such
operation constructs a dependency relation from the word on top of the
stack to the second word on the stack, and removes the second word
from the stack. The latter class uses graph algorithms to extract the
syntactic structure of a sentence from larger graphs that encode likely
candidates. For example, McDonald et al. (2005)’s parsing algorithm
searches within the graph that contains all possible dependency rela-
tions for a given sentence for the tree that maximizes some goodness
score and covers all the sentence words.4

Recently, a third class of algorithms emerged, which treat dependency
parsing as a sequence labeling task, where the key labels to be pre-
dicted are the relative positions of the head words (Fernández-González
and Gómez-Rodríguez, 2019; Vacareanu et al., 2020a). Because these
approaches are extremely simple and, yet, they perform very well, we
summarize the algorithm of Vacareanu et al. (2020a) in Figure 16.7, and
describe it in detail below. As the figure shows, this approach uses two

4 We refer the reader interested in more details on transition- and graph-based
dependency parsing algorithms to the excellent book of Jurafsky and Martin
(2022).
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classifiers on top of contextualized embeddings: one that predicts the
relative position of head for each token in the sentence (shown in red
in the figure) and one that predicts the label of dependencies, given the
predicted heads (shown in cyan in the figure). This seemingly simple idea
requires a few subtle implementation details, which we describe below:

• Because the dominant word in the sentence (gave in the figure) is
headed by it, the special token root is added on the first position in
the sentence.

• The contextualized embeddings are generated by a component that
is either the encoder of a transformer network, an RNN, or a combi-
nation of both. Combining both has several advantages. First, trans-
former networks do a better job capturing long-distance information
in the sentence because RNNs tend to be “fuzzy far away” (Khan-
delwal et al., 2018). This is necessary to understand syntactic depen-
dencies that connect words that are far apart in the sentence. On the
other hand, RNNs are “sharp nearby” (Khandelwal et al., 2018), i.e.,
they capture sequence information in local neighborhoods, which is
necessary for the vast majority of syntactic dependencies. To take ad-
vantage of both approaches, Vacareanu et al. (2020a) feed the output
embeddings produced by a transformer encoder into a bidirectional
LSTM whose hidden states serve as the input to the actual parsing
classifiers. Second, connecting a transformer network with an RNN
provides the opportunity to inject useful external information. For
example, Vacareanu et al. (2020a) construct the input embeddings for
their bidirectional LSTM by concatenating the transformer’s output
embeddings with (learned) embeddings of the corresponding part-of-
speech tags. This is useful because POS tags provide critical hints
for dependency parsing. For example, for the English language, a de-
terminer POS tag almost always indicates that the head of the cor-
responding token appears to its right in the sentence and that the
dependency label is det.

• Other than the two differences above, the classifier that predicts the
relative position of the head words operates just like any of the se-
quence models described in the previous two sections. That is, it has
an output layer on top of each contextualized representation, which
predicts the relative position of its head. For example, the relative po-
sition of the head of the word John in the sentence from Figure 16.7
is +1 (because gave immediately follows John in the sentence); the
relative position of gave’s head is −2 because the special token root
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appears two positions to the left of gave. Vacareanu et al. (2020a)
chose a range of (−50, 50) for the possible relative positions to pre-
dict because this range accounts for 99.9% of the English dependencies
in the Universal Dependencies training dataset.

• The dependency label classifier uses an output layer that operates on
top of the concatenated contextualized embeddings of the head and
modifier words. At training time, Vacareanu et al. (2020a) used the
correct heads; at testing time, the head classifier is applied first to
identify the most likely heads for all sentence words. Importantly,
both classifiers share the same component for the generation of con-
textualized embeddings, which means that this expensive operation is
applied just once.

Despite the simplicity of the approach, Vacareanu et al. (2020a) report
state-of-the-art performance on 15 distinct languages from the Universal
Dependencies project. However, this simplicity comes with a few limita-
tions:

• Because each word has exactly one head, this algorithm can only con-
struct dependency trees (rather than more complex structures such as
directed graphs). However, the basic dependency syntax introduced
here uses trees for the vast majority of languages included in the Uni-
versal Dependencies effort, so this is not a major limitation in prac-
tice.5

• Because the classifier that predicts the relative positions of the heads
is not aware of the actual sentence length, it may predict heads that
lie outside of the sentence boundaries. For example, this classifier may
predict +2 for the word a in the sentence in Figure 16.7, which would
yield an absolute head position that is outside of the actual sentence.
Nevertheless, the fix for this problem is relatively simple: for each
token pick the head position with the highest score that is also within
the sentence boundaries.

• The most important drawback of this algorithm is that it can create
cycles. As a simple example, consider that the head classifier incor-
rectly predicts John as the head of gave (instead of root) in Figure 16.7.

5 In addition to the basic syntactic representation we discuss in this section,
Universal Dependencies also include the enhanced dependencies representation,
which “makes some of the implicit relations between words more explicit, and
augments some of the dependency labels to facilitate the disambiguation of types
of arguments and modifiers:”
https://universaldependencies.org/u/overview/enhanced-syntax.html.
These enhanced dependencies violate the tree constraint more frequently than
the basic ones.

https://universaldependencies.org/u/overview/enhanced-syntax.html
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This mistake would create a cycle between John and gave. This is an
important limitation, as many NLP applications rely on the traver-
sal of dependency trees (Chambers et al., 2007; Valenzuela-Escárcega
et al., 2015). The workaround for this is two-fold:
– First, construct a dependency graph by keeping all head predictions

(or the top k in a pragmatic implementation) for each word in the
sentence. For example, the top two heads predicted for gave may
be John and root (in descending order of their score). Both these
heads generate edges in this graph: John → gave and root → gave.
Figure 16.8 shows such a hypothetical graph for the sentence shown
in Figure 16.7.

– Second, from this graph extract the maximum spanning tree ema-
nating from root, i.e., the tree that: (a) starts from the root node;
(b) contains all the sentence words, and (c) has the highest score
among all possible such trees in this graph. For example, the maxi-
mum spanning tree for the graph shown in Figure 16.8 is shown in
red in the same figure. It follows from its definition that the max-
imum spanning tree is the best parse tree that can be extracted
for the given sentence. Several algorithms have been proposed for
the extraction of maximum spanning trees from graphs: Chu (1965)
and Edmonds (1967) independently discovered the same algorithm,
which recursively eliminates cycles from directed graphs; more re-
cently, Eisner (1996) proposed a bottom-up algorithm that con-
structs well-formed trees directly.6

16.5 Relation Extraction
Information extraction is the natural language processing task that ex-
tracts structured semantic information from text. Such information in-
cludes binary relations, e.g., biochemical interactions between two pro-
teins (Krallinger et al., 2008) or n-ary events, i.e., events with more than
two arguments such as terrorist attacks, where each attack is associated
with multiple arguments including the location of the attack, the identity
of the attacker, number of victims, the amount of damage to physical
property, etc. (Sundheim, 1992). Information extraction enables many
6 We refer the interested reader to these publications for details on the respective

algorithms or to (Jurafsky and Martin, 2009) for a description of the Chu
(1965)/Edmonds (1967) algorithm.
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Figure 16.8 An example of a maximum spanning tree (in red) for a hy-
pothetical graph containing two head predictions for each sentence word.
Each edge shows a (hypothetical) prediction score; these scores are in-
cluded to emphasize that the maximum spanning tree has the highest
overall score of all possible spanning trees.

important real-world applications such as discovering potential disease
treatments or monitoring terrorist attacks from newswire documents.

For simplicity, in this section we focus on (binary) relation extraction
(RE) as an example of information extraction. Perhaps the most popular
RE dataset at the time this book was written is TACRED (Zhang et al.,
2017), which is described by its creators as:

“TACRED is a large-scale relation extraction dataset with 106,264 examples
built over newswire and web text […]. Examples in TACRED cover 41 relation
types […] (e.g., per:schools_attended and org:members) or are labeled as
no_relation if no defined relation is held.”

At testing time, the task provides two named entities that co-occur in a
sentence and requires the prediction of the relation that holds between
them (or no_relation if none of the 41 TACRED relations applies).
Figure 16.9 shows a few examples from this dataset.

Naively, one can repurpose any of the text classification architectures
introduced in Section 16.1 for RE. For example, one could train the
transformer network from Figure 16.3 to predict if any of the 41 TA-
CRED relations (or none) hold between the two entities in the input
sentence. While this is a reasonable baseline, it suffers from multiple
limitations:

• First, using the representation of the [CLS] token to predict the spe-
cific relation that holds between two entity mentions in the sentence
brings in unnecessary context (from unrelated parts of the sentence),
which carries the risk of confusing the classifier. For example, consider
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Figure 16.9 Examples of relation mentions from the TACRED corpus,
from https://nlp.stanford.edu/projects/tacred/. The first exam-
ple is an instance of the per:city_of_death relation, which holds be-
tween a person and the city where this person died; the second example
is a mention of the org:founded_by relation, which holds between an
organization and the person who founded it. The last example is not a
relation, according to the TACRED relation schema.

the following sentence that contains three entity mentions (under-
lined): John, who was born in England, married Mary. There are two
TACRED relations that hold in this sentence: per:country_of_birth,
between John and England, and per:spouse, between John and Mary.
However, the method introduced in Figure 16.3 would have to use the
same [CLS] embedding to learn both relations from this sentence. This
is likely to lead to confusion, e.g., how is the classifier to know that
the word married is important for the per:spouse relation, but born
is not?

• Second, it is possible for the relation classifier to hallucinate spurious
associations between the named entities themselves and the relation
to be classified. For example, a classifier might learn to always pre-
dict the relation per:country_of_birth whenever it sees the country
name England in a sentence, simply because most instances of Eng-
land in the training data where for this relation. This overfitting on
lexical artifacts has been observed for other NLP tasks (Suntwal et al.,
2019; Mithun et al., 2021), and there is no reason to believe that RE
is an exception. Note that it is possible that the named entities carry
some useful signal for the corresponding relation, e.g., from sentences
such as Angie Hicks founded Angie’s List in 1995, a classifier might

https://nlp.stanford.edu/projects/tacred/
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Figure 16.10 Relation extraction architecture with mention pooling. In
this example, the first entity spans two tokens, while the second entity
spans one. We omit the [CLS] and [SEP] tokens for simplicity.

be able to learn that the fact that two entities share some tokens is
an indication of a strong connection between them (e.g., the relation
org:founded_by holds here). However, in most cases the surrounding
context provides more generalizable evidence (e.g., the word founded
is a strong indicator of the relation org:founded_by in this example),
and, as mentioned, the danger of hallucinating meaningless associa-
tions is high.

The latter issue is solvable by replacing the named entities with a
mask that indicates their semantic type and their role in the corre-
sponding relation (Zhang et al., 2017). For example, following this mask-
ing strategy, the above example sentence becomes: PERSON-Obj founded
ORGANIZATION-Subj in 1995, which indicates that this sentence contains
a relation that holds between an organization named entity as subject
(or agent), and a person named entity as object (or patient).7

The first issue requires a more complicated solution, which involves a
redesign of the RE architecture to guarantee that the classifier is exposed
7 A subtle but important implementation detail here is to add these masks, e.g.,

PERSON-Obj and ORGANIZATION-Subj, in this example to the transformer
network’s vocabulary, so they are not subjected to its sub-word BPE
tokenization.
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to the precise context necessary for the corresponding relation. To this
end, (Soares et al., 2019) investigated multiple strategies; we summarize
in Figures 16.10 and 16.11 two of them. Both approaches avoid using
the [CLS] representation for relation classification by focusing instead
on the context around the two entities. However, they diverge in the
actual solutions adopted.

Figure 16.10 summarizes the relation extraction architecture with
mention pooling. The intuition behind this approach is that the con-
textualized representations of the entity tokens capture the information
surrounding the entities, which is where the relevant signal for the un-
derlying relation tends to be. In particular, this method feeds the input
sentence8 through a transformer network (or RNN) to generate contex-
tualized representations for all tokens. Next, the representations of all
tokens belonging to an entity are “max pooled” into a single vector of
the same dimension. Max pooling combines an arbitrary number of vec-
tors of the same length by keeping the maximum value at each position.
For example, feeding the two vectors [1.5, 0.9,−1.7] and [0.3,−0.2, 1.3]

into the max pooling component produces the vector [1.5, 0.9, 1.3]. The
advantage of max pooling is that it reduces the representation of an
entity to a single vector regardless of how many tokens it contains. De-
spite the fact that this process loses information, the hope is that the
strongest signal is preserved by keeping the maximum values. Next, the
max-pooled representations of the two entities are combined (typically
through concatenation, but averaging is also a common solution) and
then fed to an output layer with one neuron per relation type. This
network is trained with the usual cross-entropy loss used for multiclass
classification.

The second architecture (Figure 16.11) avoids mention pooling through
further data manipulation. In particular, this approach inserts four ad-
ditional tokens into the input sentence to mark the start/end of the
first/second entity. Then, it aggregates the contextualized representa-
tions of the two entity start tokens, i.e., [E1] and [E2], and feeds the
resulting vector to an output layer. The advantage of this strategy is
that it avoids the potential lossy process of mention pooling, while keep-
ing the relation classifier focused on the context surrounding the two
entities.

In their experiments, Soares et al. (2019) reported the second architec-
ture (Figure 16.11) performing better than the first one on four different
8 Soares et al. (2019) did not use entity masking, which is why the two figures

show entities with multiple tokens.
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Figure 16.11 Relation extraction architecture with entity markers.

RE datasets. However, results may change when these approaches are
combined with the entity masking previously discussed in this section.
For example, when entity masking is applied, both entities are repre-
sented by a single token and mention pooling is no longer necessary. In
the authors’ implementation, a simpler form of the architecture shown in
Figure 16.10, which uses entity masking and skips mention pooling, ob-
tained statistically similar results to the approach shown in Figure 16.11.

16.6 Question Answering
Question answering (QA) can be seen as next-generation search engine
technology. That is, unlike traditional search engines, which return a list
of documents in response to a keyword-based query, QA answers natural
language questions with short, exact answers.9 In addition to web or en-
terprise search, QA is necessary in chat bots and other dialogue systems.
Today, two forms of QA dominate the research landscape. The first is
extractive QA, also known as reading comprehension. As its name sug-
gests, extractive QA approaches extract answers from a set of provided
text passages. The second type of QA is multiple-choice QA, in which
QA methods have to select the correct answer from a list of provided
answers (usually with the help of supporting evidence extracted from a

9 This “next-generation” search technology is closer than we think. Google
announced in 2020 that transformer networks are used in nearly all Google
queries (Raghavan, 2020).
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In meteorology, precipitation is any product of the condensation of
atmospheric water vapor that falls under gravity. The main forms of
precipitation include drizzle, rain, sleet, snow, graupel and hail...
Precipitation forms as smaller droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, intense periods of rain in
scattered locations are called “showers.”

Q: What causes precipitation to fall?
A: gravity

Q: What is another main form of precipitation besides drizzle, rain, snow,
sleet and hail?
A: graupel

Q: Where do water droplets collide with ice crystals to form precipitation?
A: within a cloud

Figure 16.12 Sample passage and question-answer pairs from the SQuAD
dataset.

Other legislation followed, including the Migratory Bird Conservation Act of
1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the
Bald Eagle Protection Act of 1940. These later laws had a low cost to
society–the species were relatively rare–and little opposition was raised.

Q: What was the name of the 1937 treaty?
Plausible but incorrect A: Bald Eagle Protection Act

Figure 16.13 Example of an unanswerable question from the SQuAD
dataset.

textual knowledge base). We detail common architectures for these two
types of QA next.

16.6.1 Extractive Question Answering
Figure 16.12 shows an example from SQuAD, a popular extractive QA
dataset (Rajpurkar et al., 2016, 2018). The first version of the SQuAD
dataset contained over 100,000 questions associated with passages that
contained the correct answers. The second version introduced an addi-
tional 50,000 unanswerable questions, which were associated with pas-
sages that contained plausible but incorrect answers. Figure 16.13 shows
an example of such an unanswerable question.

Most of today’s extractive QA approaches follow the architecture in-
troduced in (Devlin et al., 2018), which is based on Figure 12.4 from
Chapter 12. In particular, extractive QA methods concatenate the in-
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put question and supporting passage into a single sequence, where the
two texts are separated by [SEP]. For example, the input corresponding
to the third question from Figure 16.12 is:10

[CLS] Where do water droplets collide with ice crystals to form precipitation?
[SEP] In meteorology, precipitation is […] smaller droplets coalesce via collision
with other rain drops or ice crystals within a cloud. Short, intense periods of
rain in scattered locations are called “showers.” [SEP]

Note that the transformer library will handle the generation of the po-
sition and segment embeddings shown in Figure 12.4.

This network is trained to predict which tokens in the passage are the
start and end of the answer span. For example, for the above question,
the token within is marked as the start of the answer span and the period
immediately following cloud is marked as the end of the answer span.
Devlin et al. (2018) implemented this using two binary classifiers: one
to predict which token in the passage is the start of the answer span
and a separate one to predict which token is the end. More formally,
let us call Ci the contextualized embedding produced by the underlying
transformer network for token i in the passage. Then, the probability
that token i is the start of the answer span is computed as:

P (start|i) = eS·Ci∑
j S · Cj

(16.1)

where j iterates over all the tokens in the passage, and S is a “start
vector” that is trained with the rest of the network parameters. Similarly,
the probability that token i is the end of the answer span is computed
as:

P (end|i) = eE·Ci∑
j E · Cj

(16.2)

where E is the “end vector.” The S and E vectors were introduced to
capture start/end information, which allows the two classifiers to share
the contextualized embeddings Ci.

At prediction time, this extractive QA method selects the answer span
[i, j) with the maximum P (start|i) × P (end|j) with i < j. Note that
choosing the maximum P (start|i) × P (end|j) reduces to selecting the
largest S · Ci + E · Cj because

P (start|i)× P (end|j) = eS·Ci+E·Cj∑
k S · Ck ×

∑
k E · Ck

10 We omit some text from the supporting passage for brevity.
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and the denominator does not change for different i and j.
To be deployed in realistic scenarios, this QA approach must be ex-

tended to handle two additional issues. First, SQuAD provides the pas-
sages relevant to each question in the dataset. This is unlikely to happen
in the real world, where extractive QA methods must be deployed on
collections of documents containing up to trillions of documents.11 Thus,
in order to deploy a relatively slow transformer network-based architec-
ture, an extractive QA system must first retrieve a small number of
relevant passages from the entire collection to reduce its runtime. Docu-
ment (and passage) retrieval is beyond the scope of this book. We refer
the reader interested in learning about information retrieval (IR) to the
excellent introduction by Schütze et al. (2008), and the reader eager to
start coding to the Lucene software library, which implements most of
the concepts discussed in this book.12 Note that, similar to NLP, the
field of IR is also in the process of adopting deep learning. For example,
Karpukhin et al. (2020) proposed a neural retrieval architecture that
outperforms Lucene for the retrieval of passages for question answering.

Second, an extractive QA system must robustly handle unanswer-
able questions. Luckily, the second version of SQuAD (Rajpurkar et al.,
2018) introduced training data for this situation, and the transformer
network can be fairly easily adapted to identify such questions. For ex-
ample, Devlin et al. (2018) took advantage of the [CLS] token to detect
unanswerable questions. That is, for questions that have no answer in
the supporting passage, they considered the [CLS] token to be both the
start and end of the answer span. At testing time, if the S·C[CLS]+E·C[CLS]
score is larger than the equivalent score for all i < j combinations, the
question is marked as having no answer.

16.6.2 Multiple-choice Question Answering
In contrast to extractive QA, multiple-choice QA presents a list of can-
didate answers for a given question (akin to multiple-choice questions in
school exams), from which the QA system must select the correct one.
Figure 16.14 shows an example of a multiple-choice question from the
Question Answering via Sentence Composition (QASC) dataset, which
contains 10,000 multiple-choice questions from actual U.S. elementary

11 Google indexes more than 100 trillion pages:
https://www.google.com/search/howsearchworks/.

12 https://lucene.apache.org

https://www.google.com/search/howsearchworks/
https://lucene.apache.org
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Q: Differential heating of air can be harnessed for what?

Answer choices:
(A) electricity production
(B) erosion prevention
(C) transfer of electrons
(D) reduce acidity of food

Annotated supporting facts:
F1: Differential heating of air produces wind.
F2: Wind is used for producing electricity.

Figure 16.14 Example of a multiple-choice question from the QASC
dataset, and the necessary facts to answer it.

and middle-school science exams (Khot et al., 2020). This seemingly
simple change in the task setting introduces three complications:

• The answers are provided without the context necessary to answer
them. For example, the QASC dataset comes with a separate cor-
pus of over 17 million science facts extracted from textbooks and the
web. The first task of the multiple-choice QA system is to identify
a small number of facts that support a given candidate answer (Fig-
ure 16.14 shows an example of two facts necessary to identify answer
(A) as the correct one). Similar to extractive QA, these facts tend to
be retrieved using information retrieval techniques, which are beyond
the goal of this book (Schütze et al., 2008). To account for lexical dif-
ferences between question, candidate answers, and supporting facts (a
phenomenon beautifully called “bridging the lexical chasm” by Berger
et al. (2000)), more complex techniques choose supporting facts whose
representations (or embeddings) are most similar to the representa-
tions of the given question and candidate answer (Yadav et al., 2019a).

• Importantly, many multiple-choice QA tasks require the composition
of several supporting facts to answer a question. For example, to un-
derstand that the differential heating of air can be used to produce
electricity, one needs to aggregate the information provided by the
two distinct facts shown in Figure 16.14, i.e., that differential heat-
ing produces wind, and that wind can be used to generate electricity.
Note that in this case, the linking concept (wind), does not appear
anywhere in the question or the candidate answer. This compositional
task is often referred to multi-hop QA, or, perhaps too ambitiously, as
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multi-hop reasoning. Methods to address fact composition fall beyond
the scope of this introductory book.13

• Lastly, the text used to describe the candidate answers does not need
to match the text in the background knowledge base. For example, the
correct answer in Figure 16.14 (electricity production) does not match
exactly the text used in the final supporting fact (producing electric-
ity). For this reason, the architectures used for answer classification in
multiple-choice QA have to encode all three texts available, i.e., ques-
tion, candidate answer, and supporting facts. For example, to classify
one candidate answer using a transformer architecture, a typical ar-
chitecture uses the following input: [CLS] <QA text> [SEP] <fact
text>, where <QA text> concatenates the question and candidate
answer text, <fact text> concatenates the text for all supporting
facts retrieved and composed using one of the above methods, and the
[CLS] representation is used to train a binary classifier that indicates
if the given candidate answer is correct or not (Yadav et al., 2019b).
The same method is applied to all candidate answers; the candidate
answer classified as correct with the highest score is selected as the
method’s output.

16.7 Machine Translation
Machine translation (MT) is arguably the most impactful application
of natural language processing. Today’s wide deployment of MT (either
through search engines that translate the web pages they ingest, or as
a standalone application) allows hundreds of cultures unprecedented ac-
cess to knowledge and art in other languages. This was unthinkable just
a few decades ago.14

Neural networks have drastically simplified the design and improved
the performance of MT approaches. For example, before the advent of
neural networks in the NLP space, statistical MT (SMT) minimally
relied on two components: an alignment model, which learned how to
translate words or phrases from the source language into the target lan-
guage, and a language model, which verified that the generated text in
the target language is coherent (Koehn, 2009). More complex directions
13 Intuitively, methods that maximize the coverage of the concepts mentioned in

the question and candidate answer while at the same time minimize the overlap
between the distinct facts tend to perform well (Yadav et al., 2019b).

14 For example, as of July 2022, Google Translate covers 133 languages.



16.7 Machine Translation 297

Figure 16.15 Examples of three of the 18 NLP problems that T5 trains
on, all of which are formulated as text-to-text transfer. The three tasks
are: English-to-German translation (green), summarization (yellow), and
question answering (cyan).

Figure 16.16 Example data point for T5 pre-training.

infused syntax in this approach, e.g., by learning how to change word
order to obey the syntax of the target language. For example, such an
MT approach would learn how to change from the English subject-verb-
object to the Japanese subject-object-verb (Williams et al., 2016). In
contrast, neural MT methods unified all these disparate components in
the simpler encoder-decoder architecture we introduced in Chapters 14
(theory) and 15 (implementation).

The vast majority of today’s commercial MT systems rely on the
encoder-decoder architecture we discussed in detail in Chapters 14 and 15
(or minor variations of it). One important aspect we did not mention
yet is that, similar to other NLP tasks, neural MT approaches bene-
fit from pretraining. However, BERT’s mono-lingual masked language
model pretraining objective, which we discussed in Section 12.3.1, is not
a good fit for machine translation: while it may capture language mod-
eling information, it obviously cannot learn how to align words/phrases
between source and target languages. This requires a new pretraining
objective.

One transformer variant that is pre-trained with such an objective
is the Text-to-Text Transfer Transformer (T5) (Raffel et al., 2020).
In a departure from BERT, T5 is trained on 18 distinct NLP prob-
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lems, all of which are formulated as text-to-text transfer (hence the
name). Figure 16.15 shows three examples of such tasks. Other tasks in-
clude: English-to-Romanian translation, English-to-French translation,
reading comprehension of English texts (Khashabi et al., 2018), evalu-
ating the acceptability (grammaticality) of English sentences (Warstadt
et al., 2018), etc. Xue et al. (2020) expanded the same idea to 101 lan-
guages. What is critical is that all these problems are implemented in the
same encoder-decoder framework sharing the same vocabulary, model,
and loss function (cross entropy over the decoded tokens). For example,
when the network is exposed to an English-to-German training sentence,
it maximizes the prediction probabilities of the corresponding German
tokens, e.g., Das ist gut. in Figure 16.15; when it is exposed to a data
point coming from a summarization dataset, it maximizes the probabili-
ties of the tokens in the summary. As Figure 16.15 shows, to distinguish
between the different NLP problems, T5 adds a prefix to each input,
which is unique per task, e.g., translate English to German. This train-
ing procedure is clearly beneficial for downstream machine translation
tasks that cover the same languages: it captures cross-language align-
ment information through the translation problems as well as language
modeling information through all tasks.

To further improve its performance, the T5 authors also included an
unsupervised pre-training step, which trains on data generated automat-
ically from English texts.15 This data generation procedure randomly
masks contiguous spans of texts with sentinel tokens. For each manip-
ulated input text, the corresponding output to be decoded contains all
the masked spans delimited by the sentinel tokens used to replace them,
plus a final sentinel token (<Z>). Figure 16.16 shows an example of such
a pre-training data point that was generated automatically. This data
is used to pre-train the T5 model before it is exposed to the above 18
NLP problems.

Other than the above training and pre-training procedures, the T5
architecture follows very closely the “vanilla” transformer network ar-
chitecture we introduced in Chapters 12 and 14. The one difference that
is important to mention is that T5 abandons the absolute position em-
beddings used by the original transformer network (Section 12.1.1) and
replaces them with relative position embeddings that capture the dis-
tance between tokens rather than the absolute token position in the

15 Since T5 is meant to be fine-tuned for downstream tasks, one could argue that
the training procedure summarized in Figure 16.15 is pre-training and that step
is pre-pre-training…
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sentence. This makes intuitive sense for many NLP applications. For ex-
ample, in the case of syntactic parsing, the exact position of a token in
the sentence provides minimal information about its likelihood of being
an object, but the fact that it immediately follows the verb does. Because
relative positions operate between pairs of tokens, T5 embeds relative
position information in the self-attention mechanism we introduced in
Section 12.1.2. In particular: (a) each offset value is mapped to a scalar
parameter that is learned with the rest of the network parameters, and
(b) this parameter is “added to the corresponding score used for comput-
ing the attention weights” between the key and the query (Raffel et al.,
2020). This allows T5 to consider the offsets between any two tokens
in the text to process without increasing the computational overhead of
the network in a considerable way.

16.8 Summary
This chapter describes the implementation of several common natural
language processing applications: text classification, part-of-speech tag-
ging, named entity recognition, syntactic dependency parsing, relation
extraction, question answering, and machine translation. We introduced
robust methods that achieve (near) state-of-the-art results by today’s
standards and can be implemented using the neural architectures we
introduced in the previous chapters as building blocks.

The methods discussed in this chapter are sufficient for the ideal su-
pervised machine learning scenario, in which one has to train a machine
learning method that addresses one task and sufficient and meaningful
training data is available. However, we did not discuss in this book other
real-world situations. For example, how to train the machine when only
minimal training data for the task at hand is provided (semi-supervised
learning)? Or none exists (unsupervised learning)? What to do when
there is training data, but it differs from the data the machine learning
system will be exposed to in its real-world deployment (domain adap-
tation)? How to train multiple tasks together so they benefit from each
other (multi-task learning)? Unfortunately, because this book has to
conclude at some point, we leave all these issues open. We only hope
that that the book has provided the necessary foundation so that the
reader can tackle these problems independently. Good luck!





Appendix A
Overview of the Python Language and Key

Libraries

This appendix is a review of some features of Python, NumPy, and Py-
Torch that were used in this book. It is not meant to be a comprehensive
tutorial on computer programming, Python as a programming language,
or any of the libraries used. Several excellent tutorials are available for
free online including these:

• The Python Tutorial – https://docs.python.org/tutorial/
• NumPy quickstart – https://numpy.org/doc/stable/user/quickstart.
html

• NumPy: the absolute basics for beginners – https://numpy.org/doc/
stable/user/absolute_beginners.html

• Introduction to PyTorch – https://pytorch.org/tutorials/beginner/
basics/intro.html

• The Hugging Face Course – https://huggingface.co/course/

All the examples in this appendix have been tested using Python 3.9,
NumPy 1.22, and PyTorch 1.11.

A.1 Python
Python is a high-level, multi-paradigm programming language that em-
phasizes code readability. Over time, it has become widely used in data
science and deep learning, mostly because of libraries such as NumPy,
SciPy, pandas, and PyTorch.

We assume some familiarity with computer programming, so we skip
explanations of Booleans, integers, and floating point numbers, which
are defined as in other programming languages. Instead, we review some
of the features that make Python so convenient to work with:
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(i) Containers,
(ii) String formatting,
(iii) Functions and parameter handling,
(iv) Classes and objects, and
(v) Context managers.

A.1.1 Containers
Containers are data structures that store collections of objects. Python
provides some common built-in containers, which are divided in two
main categories: sequences and mappings. Note that libraries such as
NumPy provide more specialized containers like arrays.

Sequences
Sequences are containers that are iterable, have a length, and make their
elements accessible through integer indices. Examples of Python’s built-
in sequences are list, tuple, and str (which is an abbreviation for
“string”).

In Python, both list and tuple are heterogeneous collections of ob-
jects, which means they can have elements of different types. The main
difference between them is that a list is mutable, whereas a tuple is
immutable. That is, one can assign different objects to a particular posi-
tion in a list, or one can add or remove elements from the list, changing
the list size. However, none of these operations are supported by tuple:

[1]: # a list is surrounded by square brackets
x = [1, 2, 3]
# a tuple is surrounded by parenthesis
y = (1, 2, 3)

[2]: # confirm type
print(x, type(x))
# assign 99 to the first position
x[0] = 99
print(x)
# add 100 to the end of the list, changing its size
x.append(100)
print(x)
# remove first element of the list
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x.pop(0)
print(x)

[1, 2, 3] <class 'list'>
[99, 2, 3]
[99, 2, 3, 100]
[2, 3, 100]

[3]: # confirm type
print(y, type(y))
# try to assign 99 to the first position
y[0] = 99

(1, 2, 3) <class 'tuple'>

----------------------------------------------------------
TypeError Traceback (most recent call last)
Input In [3], in <cell line: 4>()

2 print(y, type(y))
3 # assign 99 to the first position

----> 4 y[0] = 99

TypeError: 'tuple' object does not support item assignment

Sequences have a length that can be queried using the built-in len()
function.

[4]: print(len(x))
print(len(y))

3
3

Sequences can also be concatenated, that is, you can create a new
sequence by merging two sequences using the plus operator. Sometimes
we want to create a new sequence by repeating an existing one several
times. This can be achieved with concatenation, but Python provides a
shortcut with the star operator. This is analogous to the addition and
multiplication of numbers:

[5]: # concatenation
print(x + x + x)
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# repetition
print(x * 3)

[2, 3, 100, 2, 3, 100, 2, 3, 100]
[2, 3, 100, 2, 3, 100, 2, 3, 100]

Python strings are immutable sequences of characters, and support
the same immutable sequence operations we have seen so far:

[6]: s = "this is a string"
print(type(s))
print(len(s))
print(s + s + s)
print('-' * 50)

<class 'str'>
16
this is a stringthis is a stringthis is a string
--------------------------------------------------

Individual elements of a Python sequence can be accessed using integer
indexes that represent the element’s position in the sequence. These
indices are zero-based, i.e., the first position has index 0, not 1:

[7]: # print list
print(x)
# print second element
print(x[1])

[2, 3, 100]
3

Python sequences support more advanced indexing functionality that
makes working with sequences very convenient. One of these features is
the use of negative indices, which enable access to elements starting from
the end of the sequence. They are equivalent to substracting the index
from the sequence length. For example, an index of −1 in a sequence of
length 5 is equivalent to 5− 1 = 4:

[8]: # print list
print(x)
# print last element
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print(x[-1])
# print penultimate element
print(x[-2])

[2, 3, 100]
100
3

Another useful feature is the use of slices to select a subsequence.
A slice is denoted by a start position (inclusive) and a stop position
(exclusive; one after the last desired position), separated by a colon.1 If
you omit the start it will default to zero, and similarly if you omit the
stop, it will default to the length of the sequence:

[9]: print(s)
print('5 to 8:', s[5:9])
print('0 to 8:', s[:9])
print('5 to the end:', s[5:])
print('6th from the end, to the end:', s[-6:])
print('6th from the end, to 3rd from the end:', s[-6:-3])

this is a string
5 to 8: is a
0 to 8: this is a
5 to the end: is a string
6th from the end, to the end: string
6th from the end, to 3rd from the end: str

Optionally, a third number can be provided to specify a step (or
stride), which allows one to skip some of the elements between start
and stop, as well as to specify the direction of traversal:

[10]: x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# even numbers
print(x[::2])
# odd numbers
print(x[1::2])
# reverse
print(x[::-1])

1 A rationale for this convention can be found in this famous manuscript by E. W.
Dijkstra: https://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF

https://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
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[0, 2, 4, 6, 8, 10]
[1, 3, 5, 7, 9]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Sometimes we need to confirm that a sequence contains a particular
element. This can be done using the in keyword. Note, however, that
this performs a linear search. That is, each element in the sequence is
checked in order until either the element of interest is found or the whole
sequence is consumed.

Mappings
Mappings are collections that associate keys to values. The primary ex-
ample in Python is a dict, for dictionary:

[14]: d = {'x': 1, 'y': 2, 'z': 3}
print(d, type(d))

{'x': 1, 'y': 2, 'z': 3} <class 'dict'>

Dictionaries have methods to access their keys, values, and key-value
pairs (referred to as items):

[15]: print(d.keys())
print(d.values())
print(d.items())

dict_keys(['x', 'y', 'z'])
dict_values([1, 2, 3])
dict_items([('x', 1), ('y', 2), ('z', 3)])

One can iterate over the keys of a dictionary with the in keyword
(i.e., without explicitly using the keys() method):

[16]: for k in d:
print(k, d[k])

x 1
y 2
z 3

Any immutable object can be used as a key in a dict. This includes
numbers, strings, and tuples, but not, e.g., lists:
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[15]: d[0] = True
d['s'] = True
d[(1, 2)] = True
print(d)

{'x': 1, 'y': 2, 'z': 3, 0: True, 's': True, (1, 2): True}

[16]: x = [1, 2]
d[x] = True

-----------------------------------------------------------
TypeError Traceback (most recent call last)
Input In [16], in <cell line: 2>()

1 x = [1, 2]
----> 2 d[x] = True

TypeError: unhashable type: 'list'

Items stored in a dict can be deleted using the del keyword.

[17]: del d['x']
print(d)

{'y': 2, 'z': 3, 0: True, 's': True, (1, 2): True}

The in keyword is used to check if a key is contained in a mapping. The
length of a dictionary is the number of keys it contains. Note that, unlike
sequences, verifying if a key is contained in a dictionary has constant
runtime (rather than linear in the container size, as for sequences):

[18]: print(d['z'])
print('z' in d)
print('x' not in d)

3
True
True

A.1.2 String Formatting
Throughout the book, we have used f-strings to format strings. They
were introduced in Python 3.6 as a convenient alternative to string for-
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matting. To use f-strings, simply begin a string with f before the open-
ing quotation mark. Inside the string, Python expressions surrounded by
curly brackets will be evaluated and the resulting value will be included
in the string:

[1]: n = 0.125
print(f'number: {n}')
print(f'addition: {n + 1}')
print(f'number with two decimal places: {n:.2f}')
print(f'percentage with two decimal places: {n:.2%}')

number: 0.125
addition: 1.125
number with two decimal places: 0.12
percentage with two decimal places: 12.50%

In the example above, we show a few ways of formatting floating point
numbers. The first example uses the value of the variable n directly.
The second example shows that an expression can be used inside the
curly brackets (in this case, an addition). The third and fourth examples
show the use of formatting specifications. That is, the Python expression
to be formatted is followed by a colon character and the specification
to apply. These examples show how to restrict the number of decimal
digits (to only two in this example), and how to print the floating point
number as a percentage. More alternatives are available using the Format
Specification Mini-Language.2

Two particularly useful string formatting options are the addition of
commas to large numbers (by using a comma as the format specifica-
tion), and including the name of the variable being printed (by append-
ing an equals sign to the variable name):

[2]: n = 1_000_000
print(f'number: {n}')
print(f'number with commas: {n:,}')
print(f'variable name: {n=}')

number: 1000000
number with commas: 1,000,000
variable name: n=1000000

2 https://docs.python.org/3/library/string.html#formatspec

https://docs.python.org/3/library/string.html#formatspec
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A.1.3 Functions
Functions in Python are first-class objects. That is, they can be assigned
to variables, they can be passed as arguments to other functions, and
they can be returned as the resulting value of a function call. The follow-
ing example shows how to define a function that takes two arguments
and returns their sum:

[24]: def add(x, y):
return x + y

add(2, 3)

[24]: 5

As mentioned above, one of the main characteristics of first-class ob-
jects such as functions is that they can be assigned to variables. Below,
the function add is assigned to the variable x, which can now be used as
the function itself:

[25]: x = add
x(2, 3)

[25]: 5

Here we see an example of the function add from above, being passed
to another function, call_func:

[26]: def call(f, x, y):
return f(x, y)

call(add, 2, 3)

[26]: 5

Functions can also be returned from other functions. In the example
below we have a function that takes a number x as input and returns a
function that adds x to its arguments:

[29]: def make_adder(x):
def adder(y):

return x + y
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return adder

f = make_adder(5)
f(3)

[29]: 8

Sometimes we need to define simple, short-lived functions. Python
provides a shortcut to define anonymous functions using the lambda
keyword. These functions consist of a single expression, and the result-
ing value is returned automatically, without using the return keyword.
Lambda expressions are commonly used when dealing with libraries that
expect functions as arguments, as is the case with the map() method of
pandas dataframes.

[27]: f = lambda x, y: x + y
f(2, 3)

[27]: 5

One aspect of Python functions that makes them very convenient
is their parameter handling mechanism. So far we have seen examples
of positional arguments, where the values passed to the function are
assigned to the function parameters based on their position. Python
also supports named arguments, which allow us to assign arguments to
parameters by name instead of by position:

[31]: add(y=5, x=8)

[31]: 13

Further, Python supports the unpacking of sequences to form function
arguments. This is done through the star operator. In the example below,
the args sequence is unpacked, such that 2 is assigned to x, and 3 is
assigned to y:

[28]: args = [2, 3]
add(*args)

[28]: 5

Similarly, dictionaries can be unpacked with the double-star operator.



A.1 Python 311

As one would expect, in this case the keys of the dictionary must match
the function’s parameter names:

[29]: kwargs = {'x': 2, 'y': 3}
add(**kwargs)

[29]: 5

The same * operator can be used during a function declaration to
indicate that the function allows a variable number of positional argu-
ments.

[30]: def f(*args):
print(args)

f(1, 2, 3, 4)

(1, 2, 3, 4)

Similarly, the use of the ** operator during a function declaration in-
dicates that the function allows a variable number of named arguments.

[31]: def f(**kwargs):
print(kwargs)

f(x=1, y=2, z=3)

{'x': 1, 'y': 2, 'z': 3}

Lastly, Python functions support default parameter values. This is
very useful for designing APIs that expose many options to the user, but
which have reasonable default values. This feature is used extensively by
NumPy, PyTorch, and the Hugging Face libraries:

[36]: def f(x='a', y='b', z='c'):
print(f'{x=} {y=} {z=}')

f(y=99)

x='a' y=99 z='c'
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Built-in Functions
Python includes many built-in functions.3 Here we mention some of
the most common ones. We have already seen the len() function that
returns the length of a sequence. Another important function is range(),
which is used to create a sequence of numbers.

[48]: for i in range(5):
print(i)

0
1
2
3
4

The function enumerate() receives an iterable as input and returns
another iterable in which each element is a tuple containing an item’s
position in the sequence together with the actual item:

[49]: s = 'text'
for i, c in enumerate(s):

print(i, c)

0 t
1 e
2 x
3 t

The function zip() can be used to iterate over several iterables in
parallel:

[50]: xs = ['a', 'b', 'c']
ys = [1, 2, 3]
for x, y in zip(xs, ys):

print(x, y)

a 1
b 2
c 3

One useful trick involving the zip() function and the star operator
3 A complete list of Python’s built-in functions is available here:

https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html
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for unpacking arguments is illustrated below. Many times when dealing
with data we have a list of tuples, and in each tuple we have a feature
vector and its corresponding label. We often need to transform this list
into two lists: one with all the feature vectors and another one with all
the labels. By using the star operator, we unpack the list, passing the
tuples directly to the zip() function, which then iterates over them in
parallel, returning the first elements of all the tuples in a single sequence,
followed by the second elements of all the tuples, and so on (if the tuples
have more than two elements):

[51]: data = [('a', 1), ('b', 2), ('c', 3)]
names, values = zip(*data)
print(names)
print(values)

('a', 'b', 'c')
(1, 2, 3)

A.1.4 Classes and Objects
Python classes bundle together data and code, which is Python’s way
to support object-oriented programming.4 Understanding Python classes
is important for our purposes because both the PyTorch and Hugging
Face libraries use classes extensively to provide components that can be
employed to build new functionality.

In the next example we create a class called Parent to illustrate how
classes are defined. The methods with names surrounded by double un-
derscores are usually referred to as dunder methods. These dunder meth-
ods are used to implement special functionality, allowing us to implement
objects that can be used like sequences, mappings, and callables, among
other categories of objects.5 In general, one should not call dunder meth-
ods directly.

In the example below, we use the __init__() method as the construc-
tor of the class. It receives a parameter x and it stores it as an attribute
of the object being created. We also define a method called __call__()
that allows us to treat this object as a callable, that is, we can treat it
as a function. Finally, we define a regular method called value() that
simply returns the attribute x:
4 https://en.wikipedia.org/wiki/Object-oriented_programming
5 The dunder methods used to give Python objects special functionality can be

found here: https://docs.python.org/3/reference/datamodel.html

https://en.wikipedia.org/wiki/Object-oriented_programming
https://docs.python.org/3/reference/datamodel.html
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[41]: class Parent:
def __init__(self, x):

self.x = x

def __call__(self, n):
return self.x + n

def value(self):
return self.x

Next, we instantiate a new object of class Parent, implicitly calling
the __init__() method, and assign it to the variable called parent.
Then we use the object as a callable, passing the argument 10, implicitly
calling the __call__() method. We also call it explicitly, to show that
the method is there and the behavior of calling it implicitly or explicitly
is exactly the same. Finally, we call the regular method called value():

[42]: parent = Parent(5)
print(parent(10))
print(parent.__call__(10))
print(parent.value())

15
15
5

Python classes support inheritance, which allow us to arrange classes
in a hierarchy where more basic functionality can be implemented in
superclasses, and more specialized in subclasses.

The example below defines a class called Child that inherits from
Parent. The __init__() method of Child overrides (or hides) the
method of Parent, but we can still access the method of the super-
class using the super() function. We have seen this several times when
we implemented PyTorch modules throughout the book. We have also
overridden the value() method, and we have provided access to the
parent’s value() method in the child’s parent_value() method. Note
that we didn’t override the __call__() method, which means that the
Child class inherits it from the parent class (Parent):
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[44]: class Child(Parent):
def __init__(self, x, y):

super().__init__(x)
self.y = y

def value(self):
return self.x + self.y

def parent_value(self):
return super().value()

[45]: child = Child(5, 8)
print(child(10))
print(child.value())
print(child.parent_value())

15
13
5

A.1.5 Context Managers
The with statement is used in Python to manage external resources
with context managers. The classic example is reading from a file. When
we read from a file we have to open it before we start and we must
close it after we are finished. By using the with statement, we ensure
that the file is first opened and then later closed automatically when the
contained block of code exits. We have seen the with statement before
when we used the torch.no_grad() context manager to disable gradient
calculation.

Below we show an implementation of a context manager that opens a
file, and closes it when we are finished reading or writing it. This is for
illustration purposes only, since Python’s open() function already pro-
vides this functionality. Further, you will seldom need to implement your
own context managers. Note that our context manager is implemented
using the __enter__() and __exit__() dunder methods. The value re-
turned by __enter__() is bound to the variable that follows the as
keyword, which would be the file itself in this example. The __exit__()
method is executed when we leave the with block:
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[47]: class FileContextManager:
def __init__(self, filename, mode):

self.file = open(filename, mode)

def __enter__(self):
return self.file

def __exit__(self, exc_type, exc_value, traceback):
self.file.close()

with FileContextManager('test.txt', 'r') as f:
print(f.read())

this is the file's content

A.2 NumPy
NumPy is a widely-used numerical library for Python that provides
support for multi-dimensional arrays, as well as a comprehensive set
of mathematical functions that operate on these arrays. In this section
we will review some key features of NumPy, including:

(i) Creating arrays and some key array attributes,
(ii) Vectorized operations on arrays,
(iii) Indexing,
(iv) Broadcasting, and
(v) A few of NumPy’s built-in methods.

A.2.1 Arrays
NumPy provides functions to create arrays from existing data, arrays
with a particular shape, or arrays defined by numerical ranges. We cover
a few of them below.6

The array() function can be used to create a NumPy array from an
existing Python list:
6 The documentation for all array creation functions is available here:

https://numpy.org/doc/stable/reference/routines.array-creation.html

https://numpy.org/doc/stable/reference/routines.array-creation.html
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[1]: import numpy as np

x = np.array([1, 2, 3, 4, 5])
print(x)

[1 2 3 4 5]

Multi-dimensional arrays can be created by nesting Python lists. Be-
low we create a two-dimensional array with two rows and three columns:

[2]: x = np.array([[1, 2, 3], [4, 5, 6]])
print(x)

[[1 2 3]
[4 5 6]]

The function arange() returns an array of numbers in an interval. It
provides an interface similar to Python’s range() function:

[3]: x = np.arange(10)
print(x)

[0 1 2 3 4 5 6 7 8 9]

Another useful array creation function is linspace(), which creates
an array of evenly spaced numbers over an interval. Here we show how
to create an array with 5 numbers between 2 and 3:

[4]: x = np.linspace(2, 3, num=5)
print(x)

[2. 2.25 2.5 2.75 3. ]

NumPy provides functions to create multidimensional arrays of a par-
ticular shape. Here we show the zeros() and ones() functions that
create arrays filled with zeros and ones, respectively:

[5]: x = np.zeros(shape=(2, 3))
print(x)

[[0. 0. 0.]
[0. 0. 0.]]
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[6]: x = np.ones(shape=(2, 3))
print(x)

[[1. 1. 1.]
[1. 1. 1.]]

The shape of a NumPy array, represented as a tuple, can be retrieved
using its shape attribute:

[7]: print(x.shape)

(2, 3)

Importantly, unlike Python lists, all elements in NumPy arrays must
be of the same type. Several types are supported, mostly based on the
types of the C programming language.7 In our examples we mostly use
the int64 and float64 types. (We will also use Boolean arrays when
we discuss array indexing.)

The type of the array elements is stored in its dtype attribute:

[8]: print(x.dtype)

float64

When we create an array from a list, the dtype is inferred from the
elements of the list. Below we show examples of arrays created with int
and float values:

[9]: x = np.array([[1, 2, 3], [4, 5, 6]])
print(x)
print('shape:', x.shape)
print('dtype:', x.dtype)

[[1 2 3]
[4 5 6]]
shape: (2, 3)
dtype: int64

[10]: x = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
print(x)

7 The documentation for the dtypes supported by NumPy is available here:
https://numpy.org/doc/stable/reference/arrays.scalars.html

https://numpy.org/doc/stable/reference/arrays.scalars.html
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print('shape:', x.shape)
print('dtype:', x.dtype)

[[1. 2. 3.]
[4. 5. 6.]]

shape: (2, 3)
dtype: float64

The dtype can also be explicitly specified when the array is created
using the dtype parameter of the array function:

[11]: x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
print(x)
print('shape', x.shape)
print('dtype', x.dtype)

[[1. 2. 3.]
[4. 5. 6.]]

shape (2, 3)
dtype float64

[12]: x = np.zeros(shape=(2, 3), dtype=np.int64)
print(x)
print('shape', x.shape)
print('dtype', x.dtype)

[[0 0 0]
[0 0 0]]

shape (2, 3)
dtype int64

A.2.2 Vectorized Operations
NumPy’s efficiency comes from its highly-optimized functions and op-
erations over arrays. In general, using Python loops to iterate over the
individual elements of a NumPy array should be avoided. Instead, opera-
tions should be applied to the array itself, allowing NumPy to efficiently
operate over the elements of the array.

Below we show that adding and multiplying an array by a scalar
is equivalent to applying that operation between the scalar and every
element of the array, in bulk:
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[13]: x = np.arange(5)
print(x)
print(x + 10)
print(x * 5)

[0 1 2 3 4]
[10 11 12 13 14]
[ 0 5 10 15 20]

NumPy also supports element-wise operations between arrays of the
same shape. Below we show the addition and multiplication of two arrays
of the same size:

[14]: x = np.array([2, 4, 6, 8])
y = np.array([1, 2, 3, 4])
print(x + y)
print(x * y)

[ 3 6 9 12]
[ 2 8 18 32]

An operation that is very useful in linear algebra, and thus machine
learning, is matrix multiplication, including the dot product. Matrix
multiplication is performed using the at operator. In the next example
we show the dot product of the x and y arrays defined above:

[15]: print(x @ y)

60

The same operator can be used to multiply a matrix and a one-
dimensional array, as long as their shapes are compatible. Below we
show the multiplication of a (2× 3) matrix and a 3-dimensional vector:

[16]: mat = np.array([[1, -2, 4], [3, 0, -5]])
vec = np.array([3, 2, 1])
print(mat @ vec)

[3 4]

The next example shows the use of the at operator to multiply a (2×3)

matrix and a (3× 2) matrix, resulting in a (2× 2) matrix:
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[17]: mat1 = np.array([[1, -2, 4], [3, 0, -5]])
mat2 = np.array([[2, 1], [3, 4], [0, -2]])
print(mat1 @ mat2)

[[ -4 -15]
[ 6 13]]

A.2.3 Indexing
NumPy supports a sophisticated mechanism to access array elements
and slices. Not only do NumPy arrays support indexing using inte-
gers, just like Python lists, but they also support arrays of integers and
Booleans to access several elements at once.

Here we create a (3 × 5) array initialized with random values, which
we will use for the indexing examples below:

[18]: x = np.random.rand(3, 5)
x

[18]: array([[0.87108457, 0.893787 , 0.02692156, 0.72924685, 0.
↪→01412141],

[0.90573701, 0.40813536, 0.85640188, 0.11093727, 0.
↪→06586925],

[0.27893989, 0.8061504 , 0.67575313, 0.97175433, 0.
↪→52530966]])

A single element of a multidimensional array can be accessed by spec-
ifying the coordinates in each dimension, separated by commas:

[19]: x[1, 1]

[19]: 0.40813536461556266

Python’s slice syntax is also supported for each dimension. Here we
retrieve all the elements corresponding to the second row in the array:

[20]: x[1, :]

[20]: array([0.90573701, 0.40813536, 0.85640188, 0.11093727, 0.
↪→06586925])
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In the next example we retrieve all the elements corresponding to the
second column in the array:

[21]: x[:,1]

[21]: array([0.893787 , 0.40813536, 0.8061504 ])

Here we retrieve a smaller matrix by discarding the first row and the
first column:

[22]: x[1:, 1:]

[22]: array([[0.40813536, 0.85640188, 0.11093727, 0.06586925],
[0.8061504 , 0.67575313, 0.97175433, 0.52530966]])

Arrays of integers can also be used to index an array, retrieving the
elements corresponding to the positions in the index array, in that order:

[23]: x = np.arange(10)
indices = [2, 4, 1]
print(x)
print(x[indices])

[0 1 2 3 4 5 6 7 8 9]
[2 4 1]

Another useful way to retrieve elements from an array is using Boolean
indices. In this case, an array of Booleans of the same shape as the
array of values must be provided, and the elements corresponding to the
True values will be returned. In the example below we retrieve the even
values of the array by computing an array of Booleans that indicates
which values divided by two have a remainder of zero. Then we use this
Boolean array to index the array of values, retrieving the even elements:

[24]: x = np.array([1, 2, 3, 4, 5])
print(x)
print(x % 2)
print(x % 2 == 0)
mask = x % 2 == 0
print(x[mask])

[1 2 3 4 5]
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[1 0 1 0 1]
[False True False True False]
[2 4]

A.2.4 Broadcasting
So far we have shown arithmetic operations over arrays of the same
shape. Arithmetic operations can also be applied to arrays of different
shapes, as long as their shapes are compatible. In these situations, the
smaller array is repeated over the bigger array in a process called broad-
casting.8

Here we define a two-dimensional array x of shape (2× 3) and a one-
dimensional array with two elements:

[25]: x = np.array([[1, 2, 3], [4, 5, 6]])
y = np.array([10, 20])

When we try to add them together we get an exception stating that
the operands of the addition cannot be broadcasted together:

[26]: x + y

-----------------------------------------------------------
ValueError Traceback (most recent call last)
Input In [26], in <cell line: 1>()
----> 1 x + y

ValueError: operands could not be broadcast together with␣
↪→shapes (2,3) (2,)

The first condition for compatible shapes is that they must have the
same number of dimensions. The second condition is that the corre-
sponding sizes for each dimension must be equal, or one of them must
be one.

We now use the expand_dims() function to add a new dimension to
our array, so that it now has the shape (2× 1):

[27]: y = np.expand_dims(y, axis=1)

8 The documentation for broadcasting is available here:
https://numpy.org/doc/stable/user/basics.broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html
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print(y)
print(y.shape)

[[10]
[20]]
(2, 1)

Now we have two arrays, each with two dimensions. The first one of
shape (2 × 3), and the second one of shape (2 × 1). These shapes are
compatible according to the rules of broadcasting. When we add them
together, the smaller array will be repeated over the columns of the
bigger array:

[28]: x + y

[28]: array([[11, 12, 13],
[24, 25, 26]])

A.2.5 A Few Built-in NumPy Methods
The NumPy library contains a vast collection of functions intended to
create, manipulate, and apply mathematical operations on arrays. In
this subsection we show just a few functions to illustrate their use.9

In the classification examples implemented throughout the book, we
often had to find the value corresponding to the highest predicted score.
This can be done using the argmax() function, which returns the in-
dex corresponding to the highest value of the array. To exemplify the
argmax() function, we first create an array and shuffle its values:

[29]: x = np.arange(10)
print(x)
np.random.shuffle(x)
print(x)

[0 1 2 3 4 5 6 7 8 9]
[7 3 6 0 5 8 4 9 2 1]

Then we use the argmax() function to find the index of the maximum
value, and we print both the index and the value:
9 A comprehensive list of NumPy functions is available here:

https://numpy.org/doc/stable/reference/routines.html

https://numpy.org/doc/stable/reference/routines.html
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[30]: i = np.argmax(x)
print('argmax', i, 'max', x[i])

argmax 7 max 9

Sometimes the maximum value is not sufficient, and we must retrieve
the top-k values instead (for example, when looking for the top-k most
similar words to a given word in Chapter 9). The argsort() function
returns an array of indices that corresponds to the sorted values. This
array of indices can be used to index the value array, retrieving the
sorted values:

[31]: indices = np.argsort(x)
print(indices)
print(x[indices])

[3 9 8 1 6 4 2 0 5 7]
[0 1 2 3 4 5 6 7 8 9]

NumPy arrays contain several methods that can be used instead of the
functions implemented at the library level. Here we use as an example the
min() method that returns the minimum value in the array. To show
its usage, we first create a new (2 × 3) array populated with random
integers between 0 and 100:

[32]: x = np.random.randint(100, size=(2, 3))
print(x)

[[79 12 24]
[58 66 1]]

Next, we use the min() method without arguments to retrieve the
smallest value in the array. Then we also show how to restrict the appli-
cation of the function to a particular direction using the axis parameter,
retrieving the smallest value per column, and per row. This way of op-
erating over a particular dimension is common in NumPy:

[33]: print(x.min())
print(x.min(axis=0))
print(x.min(axis=1))

1
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[58 12 1]
[12 1]

A.3 PyTorch
PyTorch is a machine learning library used extensively in natural lan-
guage processing and computer vision. The main data structure provided
by PyTorch is the tensor, which shares many features with NumPy ar-
rays. The most important functionality provided by tensors is the sup-
port for GPUs, which is crucial for the efficient training of neural net-
works.

In this section we provide a brief description on how to create tensors
and modules (the building blocks of PyTorch neural networks).

A.3.1 PyTorch Tensors
Similar to NumPy arrays, tensors can be created directly from Python
lists, and the types are inferred from the list elements:

[1]: import torch

torch.tensor([[1, 2], [3, 4], [5, 6]])

[1]: tensor([[1, 2],
[3, 4],
[5, 6]])

Also, dtypes can be specified explicitly when creating a tensor:

[2]: torch.tensor([[1, 2], [3, 4], [5, 6]],
dtype=torch.float32)

[2]: tensor([[1., 2.],
[3., 4.],
[5., 6.]])

Tensors can also be created from NumPy arrays. This is useful since
NumPy arrays are used extensively by many other libraries such as pan-
das or SciPy:
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[3]: import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6]])
t = torch.from_numpy(x)
print(t)

tensor([[1, 2, 3],
[4, 5, 6]])

Tensors can also be converted back to Python lists or NumPy arrays:

[4]: t.tolist()

[4]: [[1, 2, 3], [4, 5, 6]]

[5]: t.numpy()

[5]: array([[1, 2, 3],
[4, 5, 6]])

A.3.2 Modules
A module is a class that inherits from PyTorch’s nn.Module. Modules are
used to implement either complete neural models or individual layers in
complex neural networks. For example, the layers provided by PyTorch
such as nn.Linear also inherit from nn.Module.10

Below we create a module called FeedForward, which connects two
linear layers with a non-linearity (ReLU) between them. The two main
methods that we need to implement are __init__() and forward(). It
is very important that we call nn.Module’s constructor from our con-
structor, since it sets up several important components required for our
modules to interact correctly with the rest of PyTorch. The forward()
method implements the forward pass of our module:

[6]: from torch import nn

class FeedForward(nn.Module):
def __init__(self, in_size, hidden_size, out_size):

super().__init__()

10 The documentation for the different layers implemented in PyTorch is available
here: https://pytorch.org/docs/stable/nn.html

https://pytorch.org/docs/stable/nn.html
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self.fc1 = nn.Linear(in_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, out_size)

def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x

[7]: ff = FeedForward(4, 3, 2)
ff

[7]: FeedForward(
(fc1): Linear(in_features=4, out_features=3, bias=True)
(relu): ReLU()
(fc2): Linear(in_features=3, out_features=2, bias=True)

)

The correct way to use a class that inherits from nn.Module is through
its __call__() method, which is achieved by using the object as if it were
a function. This, in turn, calls the forward() method. Note, for exam-
ple, that our module’s forward() method does not call the forward()
method of the linear layers. Instead, we use the included modules as
functions, e.g., self.fc1(x). Similarly, we do not call the forward()
method of our module in the example below.

Importantly, a layer’s input size refers to the second dimension of
the input provided to the module. The first dimension is the number
of examples that are being passed to the model, i.e., the batch size.
This is true for all PyTorch layers, since PyTorch is designed to support
batching. It is important to keep this in mind when passing a single
example to a PyTorch layer, since it must be packaged as a batch of
size one. The example below shows how to use our example module on
a batch that contains two examples of size four:

[8]: t = torch.tensor(
[[1, 2, 3, 4], [5, 6, 7, 8]],
dtype=torch.float32,

)
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ff(t)

[8]: tensor([[ 0.7461, -1.0864],
[ 1.3010, -1.8234]], grad_fn=<AddmmBackward0>)

A.3.3 GPU Usage in PyTorch
As mentioned previously, one of the main features of PyTorch is its
support of GPUs. We can use the cuda.is_available() function to
check if PyTorch has detected a GPU that it can use.

[9]: torch.cuda.is_available()

[9]: True

We can indicate to PyTorch that we intend to perform a computation
on the CPU or the GPU by using a device object, which can be created
as follows:

[10]: device = torch.device('cpu')
device

[10]: device(type='cpu')

[11]: device = torch.device('cuda')
device

[11]: device(type='cuda')

PyTorch tensors and modules provide a to() method that can be used
to copy the data to the specified device. Note that both the module and
the tensor data need to be on the same device in order to interact with
each other:

[12]: ff = ff.to(device)
t = t.to(device)
ff(t)

[12]:
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tensor([[ 0.0553, -0.2621],
[-0.2935, 0.0889]], device='cuda:0',␣

↪→grad_fn=<AddmmBackward0>)



Appendix B
Character Encodings: ASCII and Unicode

Every NLP practitioner needs to understand how computers represent
text. In this appendix we will discuss different representations of text
and try to demystify the concepts involved. In particular, we will discuss
the difference between text and bytes, what encoding/decoding means in
this context, and text normalization. This is a vast topic and we will not
cover it completely. We aim to explain the fundamentals, in particular
the ones most needed for NLP.

B.1 How Do Computers Represent Text?
Computers represent text the same way that they represent images,
sounds, video, and everything else: as numbers. Character encodings es-
tablish a mapping between characters and unique numbers that identify
them. Note that character encodings are not exclusive to computers. For
example, Morse code is a character encoding that predates computers,
but that illustrates the usefulness of encoding text into a representation
that can be transmitted over long distances.1

In the United States, the ASCII character encoding became an early
standard for encoding text in computers.2 ASCII consists of 127 char-
acters. Of these, 96 are printable characters (i.e., letters, digits, punc-
tuation, and other symbols), and the rest are control characters, which
were not meant to be printed, but to control devices such as printers. As
mentioned, each of these characters needs to be represented as a number
by the computer. We list the numbers corresponding to ASCII control
characters in Table B.1, and those for printable characters in Table B.2.
1 As electric pulses over wires.
2 ASCII is short for American Standard Code for Information Interchange.
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Table B.1 ASCII control characters.

number description number description

0 Null 16 Data Line Escape
1 Start of Heading 17 Device Control 1
2 Start of Text 18 Device Control 2
3 End of Text 19 Device Control 3
4 End of Transmission 20 Device Control 4
5 Enquiry 21 Negative Acknowledgment
6 Acknowledgment 22 Synchronous Idle
7 Bell 23 End of Transmit Block
8 Backspace 24 Cancel
9 Horizontal Tab 25 End of Medium
10 Line Feed 26 Substitute
11 Vertical Tab 27 Escape
12 Form Feed 28 File Separator
13 Carriage Return 29 Group Separator
14 Shift Out 30 Record Separator
15 Shift In 31 Unit Separator

Computers represent numbers as sequences of ones and zeros, with
each digit in the sequence being referred to as a bit.3 Internally, com-
puters manipulate groups of bits at a time. For mostly historical reasons
that we will not explore here, computers group sequences of 8 bits to-
gether; this is referred to as a byte. Because a byte has 8 bits, it can
encode 28 = 256 values. Thus, since ASCII has 127 characters, any
ASCII character can be stored in a byte.

As Table B.2 shows, the ASCII encoding is tailored for languages that
rely on the Latin alphabet, and not for others. To begin to remedy this
limitation, several standards emerged that used ASCII as a base, but
that added more characters, taking advantage of the fact that ASCII
only defines 127 out of 256 possible values in a byte. ISO-8859-1, com-
monly referred to as Latin-1, is an example of an encoding that adds
characters to ASCII to support additional languages spoken in Europe
and parts of Africa. Windows-1252 is another of these encodings, which
extends ISO-8859-1 and was popularized by Microsoft. Other regions of
the world developed their own standards to suit their needs such as the
Japanese Industrial Standard (JIS) in Japan.4

As the Internet and the world became more connected, the need to

3 The term bit is a portmanteau for binary digit.
4 https://en.wikipedia.org/wiki/JIS_encoding

https://en.wikipedia.org/wiki/JIS_encoding
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Table B.2 ASCII printable characters.

number character number character number character number character

32 (space) 56 8 80 P 104 h
33 ! 57 9 81 Q 105 i
34 " 58 : 82 R 106 j
35 # 59 ; 83 S 107 k
36 $ 60 < 84 T 108 l
37 % 61 = 85 U 109 m
38 & 62 > 86 V 110 n
39 ' 63 ? 87 W 111 o
40 ( 64 @ 88 X 112 p
41 ) 65 A 89 Y 113 q
42 * 66 B 90 Z 114 r
43 + 67 C 91 [ 115 s
44 , 68 D 92 \ 116 t
45 - 69 E 93 ] 117 u
46 . 70 F 94 ^ 118 v
47 / 71 G 95 _ 119 w
48 0 72 H 96 ` 120 x
49 1 73 I 97 a 121 y
50 2 74 J 98 b 122 z
51 3 75 K 99 c 123 {
52 4 76 L 100 d 124 |
53 5 77 M 101 e 125 }
54 6 78 N 102 f 126 ~
55 7 79 O 103 g 127 (delete)

share documents between the many regions of the world became more
pressing, and the different encodings became problematic. Further, the
various ASCII extensions are still woefully insufficient to encode the va-
riety of world’s alphabets. This led to a push for a universal encoding for
all writing systems: in 1991, the Unicode Foundation published the first
version of the Unicode standard. The Unicode standard can be thought
of as a large table that assigns a unique identifier to each character,
much like ASCII, but with tens of thousands of characters instead of a
couple of hundred. Each of these numerical identifiers is referred to as a
code point.5 Note that not all of these code points correspond to what
one would typically consider a character. Some of these, called combin-
ing characters, must be combined with another code point to form a
character. This means that there can be a sequence of code points that

5 There are 143,859 characters as of Unicode 13.0. For backwards compatibility,
the first 128 Unicode code points correspond to the ASCII characters.
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together form a single character. For example, diacritical marks such as
accents are commonly combined with Latin letters to form characters in
many European languages, e.g., á in Spanish.

Importantly, Unicode code points do not fit into a single byte the
way ASCII characters do. Instead, we need a way of transforming a
code point into multiple bytes. The most convenient encoding for this is
UTF-8, which encodes a code point into a sequence of bytes of variable
length, between 1 to 4 bytes, depending on its value. One nice property
of UTF-8 is that ASCII is a subset of UTF-8, as the first 128 Unicode
code points correspond to the ASCII characters. In practice, this means
that any file encoded with ASCII can be decoded with UTF-8. Further,
the algorithm for the UTF-8 encoding uses as few bytes as possible to
encode the code points, which helps reduce the size of the represented
texts.

Lastly, the Unicode standard also establishes other character proper-
ties such as names and numeric values. For example, the character ½
has a numeric value of 0.5.
>>> s = '½'
>>> unicodedata.numeric(s)
0.5

The Unicode standard also provides rules for text normalization, col-
lation, and even rendering.

B.2 How to Encode/Decode Characters in Python
Now that we have a better understanding of what character encodings
are, and why they exist, let’s see how they work in Python. We’ll start
with a string that has an acute accent in the first character:
>>> s = 'ábaco'

Calling the encode method on a string returns a bytes Python object,
which is a sequence of integers between 0 and 255 (inclusive). Python
prints bytes objects as strings, except that it prepends a b to it, and it
prints bytes that do not map to ASCII characters using a backslash fol-
lowed by the letter x and two hexadecimal digits (e.g., \xc3 and \xa1):6

6 Recall that one hexadecimal digit takes values between 0 and 15, and a
hexadecimal number of two digits takes values between 0 and 255, similar to a
byte. For example, the hexadecimal digit a corresponds to the decimal number
10, and the hexadecimal number a1 corresponds to the decimal number
10× 16 + 1 = 161.
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>>> s.encode('utf8')
b'\xc3\xa1baco'
>>> s.encode('latin1')
b'\xe1baco'

Note that UTF-8 requires two bytes to encode the character á, and
Latin-1 requires only one (because of its extension to the ASCII standard
with new characters that fit within a byte).

If you encode a string and decode it with the same encoding, the
content will be preserved:
>>> s.encode('utf8').decode('utf8')
'ábaco'

However, if you encode with one encoding and decode with another,
the message gets corrupted or the decoding simply fails.
>>> s.encode('utf8').decode('latin1')
'Ã¡baco'
>>> s.encode('latin1').decode('utf8')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe1
in position 0: invalid continuation byte

To address this, the errors flag can be provided, which tells Python
how to handle failures. The default value is strict (problems cause a
crash), but other options include ignore (skip problem characters), and
replace (replace problem characters with an unknown token).
>>> s.encode('latin1').decode('utf8', errors='ignore')
'baco'
>>> s.encode('latin1').decode('utf8', errors='replace')
'�baco'

An alternative is to find out the correct encoding of the file to be
processed using command-line tools such as chardet:7

$ chardet readme.txt
readme.txt: utf-8 with confidence 0.99

B.3 Text Normalization
Being able to compare strings is critical to many NLP applications.
For this, we need to be able to compare sequences of code points and
determine if they are equivalent. Unicode allows several sequences of
code points to render identically, so they appear to be the same even
7 https://github.com/chardet/chardet

https://github.com/chardet/chardet
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though the underlying representation is not. For example, consider the
character á, which can be represented either directly as that character,
or else as a combined with an acute accent combining character. This is
shown in the following snippet:
>>> print(s1)
á
>>> print(s2)
á
>>> s1 == s2
False
>>> import unicodedata
>>> len(s1)
1
>>> unicodedata.name(s1)
'LATIN SMALL LETTER A WITH ACUTE'
>>> len(s2)
2
>>> unicodedata.name(s2[0])
'LATIN SMALL LETTER A'
>>> unicodedata.name(s2[1])
'COMBINING ACUTE ACCENT'

B.3.1 Unicode Normalization Forms
Unicode defines two types of equivalence between characters: canoni-
cal equivalence and compatibility equivalence. According to the Unicode
Standard Annex 158:
Canonical equivalence is a fundamental equivalency between characters or se-
quences of characters which represent the same abstract character, and which
when correctly displayed should always have the same visual appearance and
behavior.

...
Compatibility equivalence is a weaker type of equivalence between characters

or sequences of characters which represent the same abstract character (or se-
quence of abstract characters), but which may have distinct visual appearances
or behaviors.

To make use of these types of equivalence, Unicode defines four different
forms of normalization, based on composition and decomposition. Es-
sentially, composition can be thought of as replacing sequences of char-
acters that combine with a single composite character that is visually
equivalent. Decomposition performs the opposite operation:�� composite
characters are broken down into the combining characters that could be
used to create their visual equivalent, with a consistent ordering. These
normalization forms are listed in Table B.3.
8 https://unicode.org/reports/tr15/

https://unicode.org/reports/tr15/
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Table B.3 The four normalization forms in Unicode.

Name Description

Normalization Form D (NFD) Canonical decomposition
Normalization Form C (NFC) Canonical decomposition,

followed by canonical composition
Normalization Form KD (NFKD) Compatibility decomposition
Normalization Form KC (NFKC) Compatibility decomposition,

followed by canonical composition

Normalization Form C (NFC) is the one most commonly used, at
least for American, European, and Korean languages.9 To apply this
normalization in Python we can use the unicodedata module, as shown
below.
>>> import unicodedata
>>> unicodedata.normalize('NFC', s)
'ábaco'

Decomposition is useful when we want to strip diacritics from their
characters. To do this, we first decompose the characters in a string, then
remove all combining characters, and, finally, combine the remaining
characters:
def remove_diacritics(text):

s = unicodedata.normalize('NFD', text)
s = ''.join(c for c in s if unicodedata.combining(c))
return unicodedata.normalize('NFC', s)

Sometimes, depending on our application, canonical equivalence may
not be sufficient. For example, Unicode provides several variants of
the Greek letter π, e.g., GREEK SMALL LETTER PI, GREEK PI
SYMBOL, DOUBLE-STRUCK SMALL PI, MATHEMATICAL BOLD
SMALL PI. Sometimes these distinctions are meaningful, but sometimes
we just need to know if it is the Greek letter π in any of its variants. In
these situations, compatibility equivalence is more appropriate:
>>> c1 = unicodedata.lookup('GREEK SMALL LETTER PI')
>>> c2 = unicodedata.lookup('GREEK PI SYMBOL')
>>> c1 == c2
False
>>> nfc1 = unicodedata.normalize('NFC', c1)
>>> nfc2 = unicodedata.normalize('NFC', c2)
>>> nfc1 == nfc2
False

9 https://www.w3.org/wiki/I18N/CanonicalNormalization

https://www.w3.org/wiki/I18N/CanonicalNormalization
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>>> nfkc1 = unicodedata.normalize('NFKC', c1)
>>> nfkc2 = unicodedata.normalize('NFKC', c2)
>>> nfkc1 == nfkc2
True

B.3.2 Case-folding
Another string equivalence that is needed by some applications is case
insensitive equivalence. For example, when building a classifier over so-
cial media texts, we may prefer a case insensitive classifier, as case is
inconsistently used in such informal texts. The way this is usually done
is by converting all strings to lowercase before comparing them, or us-
ing them in downstream components. This process is called case-folding.
This is sufficient when dealing with ASCII or Latin-1 characters. How-
ever, when we consider other writing systems things get more compli-
cated. Unicode’s casefolding is similar to transforming text to lowercase,
but it adds some additional transformations that make the resulting
strings more suitable for case insensitive analyses:
>>> s1 = 'groß'
>>> s2 = 'gross'
>>> s1.lower()
'groß'
>>> s1.casefold()
'gross'
>>> s1.lower() == s2.lower()
False
>>> s1.casefold() == s2.casefold()
True



Bibliography

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. 2016. Layer
normalization. arXiv preprint arXiv:1607.06450.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. 2015. Neural
Machine Translation by Jointly Learning to Align and Translate. CoRR,
abs/1409.0473.

Ballesteros, Miguel, Dyer, Chris, Goldberg, Yoav, and Smith, Noah A. 2017.
Greedy Transition-Based Dependency Parsing with Stack LSTMs. Com-
putational Linguistics, 43(2), 311–347.

Banerjee, Satanjeev, and Lavie, Alon. 2005. METEOR: An automatic metric
for MT evaluation with improved correlation with human judgments.
Pages 65–72 of: Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization.

Baum, Leonard E, and Eagon, John Alonzo. 1967. An inequality with ap-
plications to statistical estimation for probabilistic functions of Markov
processes and to a model for ecology. Bulletin of the American Mathe-
matical Society, 73(3), 360–363.

Baum, Leonard E, and Petrie, Ted. 1966. Statistical inference for probabilis-
tic functions of finite state Markov chains. The annals of mathematical
statistics, 37(6), 1554–1563.

Bellman, Richard. 1954. The theory of dynamic programming. Bulletin of the
American Mathematical Society, 60(6), 503–515.

Bellman, Richard. 1957. Dynamic programming. Princeton University Press.
Beltagy, Iz, Peters, Matthew E, and Cohan, Arman. 2020. Longformer: The

long-document transformer. arXiv preprint arXiv:2004.05150.
Berger, Adam, Caruana, Rich, Cohn, David, Freitag, Dayne, and Mittal,

Vibhu. 2000. Bridging the lexical chasm: statistical approaches to answer-
finding. Pages 192–199 of: Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information
retrieval.

Block, Hans-Dieter. 1962. The perceptron: A model for brain functioning. i.
Reviews of Modern Physics, 34(1), 123.

Bojanowski, Piotr, Grave, Edouard, Joulin, Armand, and Mikolov, Tomas.

339



340 Bibliography

2017. Enriching Word Vectors with Subword Information. Transactions
of the Association for Computational Linguistics, 5, 135–146.

Bojar, Ondřej, Chatterjee, Rajen, Federmann, Christian, Graham, Yvette,
Haddow, Barry, Huck, Matthias, Jimeno Yepes, Antonio, Koehn, Philipp,
Logacheva, Varvara, Monz, Christof, Negri, Matteo, Névéol, Aurélie,
Neves, Mariana, Popel, Martin, Post, Matt, Rubino, Raphael, Scarton,
Carolina, Specia, Lucia, Turchi, Marco, Verspoor, Karin, and Zampieri,
Marcos. 2016. Findings of the 2016 Conference on Machine Translation.
Pages 131–198 of: Proceedings of the First Conference on Machine Trans-
lation: Volume 2, Shared Task Papers. Berlin, Germany: Association for
Computational Linguistics.

Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y, Saligrama, Venkatesh, and
Kalai, Adam T. 2016. Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. Advances in neural information
processing systems, 29, 4349–4357.

Brown, Peter F, Della Pietra, Vincent J, Desouza, Peter V, Lai, Jennifer C, and
Mercer, Robert L. 1992. Class-based n-gram models of natural language.
Computational linguistics, 18(4), 467–480.

Bunescu, Razvan, and Mooney, Raymond. 2005. A shortest path dependency
kernel for relation extraction. Pages 724–731 of: Proceedings of human
language technology conference and conference on empirical methods in
natural language processing.

Chambers, Nathanael, Cer, Daniel, Grenager, Trond, Hall, David, Kiddon,
Chloe, MacCartney, Bill, De Marneffe, Marie-Catherine, Ramage, Daniel,
Yeh, Eric, and Manning, Christopher D. 2007. Learning alignments and
leveraging natural logic. Pages 165–170 of: Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Paraphrasing.

Charniak, Eugene, Knight, Kevin, and Yamada, Kenji. 2003. Syntax-based
language models for statistical machine translation. In: Proceedings of
Machine Translation Summit IX: Papers.

Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre, Caglar, Bahdanau,
Dzmitry, Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua. 2014.
Learning phrase representations using RNN encoder-decoder for statisti-
cal machine translation. arXiv preprint arXiv:1406.1078.

Chu, Yoeng-Jin. 1965. On the shortest arborescence of a directed graph.
Scientia Sinica, 14, 1396–1400.

Cireşan, Dan Claudiu, Meier, Ueli, Gambardella, Luca Maria, and Schmidhu-
ber, Jürgen. 2010. Deep, big, simple neural nets for handwritten digit
recognition. Neural computation, 22(12), 3207–3220.

Collins, Michael. 1996. A new statistical parser based on bigram lexical de-
pendencies. arXiv preprint cmp-lg/9605012.

Collins, Michael. 2002. Discriminative training methods for hidden markov
models: Theory and experiments with perceptron algorithms. Pages 1–8
of: Proceedings of the 2002 conference on empirical methods in natural
language processing (EMNLP 2002).



Bibliography 341

Collins, Michael, and Roark, Brian. 2004. Incremental parsing with the per-
ceptron algorithm. Pages 111–118 of: Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics (ACL-04).

Conneau, Alexis, Khandelwal, Kartikay, Goyal, Naman, Chaudhary, Vishrav,
Wenzek, Guillaume, Guzmán, Francisco, Grave, Edouard, Ott, Myle,
Zettlemoyer, Luke, and Stoyanov, Veselin. 2019. Unsupervised cross-
lingual representation learning at scale. arXiv preprint arXiv:1911.02116.

Cortes, Corinna, and Vapnik, Vladimir. 1995. Support-vector networks. Ma-
chine learning, 20(3), 273–297.

Cox, David R. 1958. The regression analysis of binary sequences. Journal of
the Royal Statistical Society: Series B (Methodological), 20(2), 215–232.

Cramer, Jan Salomon. 2002. The origins of logistic regression.
Crammer, Koby, and Singer, Yoram. 2003. Ultraconservative online algorithms

for multiclass problems. Journal of Machine Learning Research, 3(Jan),
951–991.

Crammer, Koby, Dekel, Ofer, Keshet, Joseph, Shalev-Shwartz, Shai, and
Singer, Yoram. 2006. Online passive aggressive algorithms. Journal of
Machine Learning Research, 7, 551–585.

Crystal, David. 1997. The Cambridge encyclopedia of language (2nd ed.).
Cambridge University Press.

Cui, Hang, Sun, Renxu, Li, Keya, Kan, Min-Yen, and Chua, Tat-Seng. 2005.
Question answering passage retrieval using dependency relations. Pages
400–407 of: Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval.

De Marneffe, Marie-Catherine, and Manning, Christopher D. 2008. Stanford
typed dependencies manual. Tech. rept. Technical report, Stanford Uni-
versity.

Dean, Jeffrey, Corrado, Greg S, Monga, Rajat, Chen, Kai, Devin, Matthieu,
Le, Quoc V, Mao, Mark Z, Ranzato, Marc’Aurelio, Senior, Andrew,
Tucker, Paul, et al. 2012. Large scale distributed deep networks. In:
Proceedings of the Conference on Neural Information Processing Sys-
tems.

Deerwester, Scott, Dumais, Susan T, Furnas, George W, Landauer, Thomas K,
and Harshman, Richard. 1990. Indexing by latent semantic analysis.
Journal of the American society for information science, 41(6), 391–407.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. 2018.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Dickerson, Desiree. 2019. How I overcame impostor syndrome after leaving
academia. Nature.

Dietterich, Thomas G. 2000. Ensemble methods in machine learning. Pages
1–15 of: International workshop on multiple classifier systems. Springer.

Domingos, Pedro. 2015. The Master Algorithm: How the Quest for the Ultimate
Learning Machine Will Remake Our World. Basic Books.

Donaldson, Julai, and Scheffler, Axel. 2008. Where’s My Mom? Dial Books.
Dozat, Timothy, and Manning, Christopher D. 2016. Deep biaffine attention

for neural dependency parsing. arXiv preprint arXiv:1611.01734.



342 Bibliography

Dreyfus, Hubert L. 1992. What computers still can’t do: A critique of artificial
reason. MIT press.

Dreyfus, Stuart. 1962. The numerical solution of variational problems. Journal
of Mathematical Analysis and Applications, 5(1), 30–45.

Dreyfus, Stuart E. 1990. Artificial neural networks, back propagation, and
the Kelley-Bryson gradient procedure. Journal of guidance, control, and
dynamics, 13(5), 926–928.

Dubey, Shiv Ram, Singh, Satish Kumar, and Chaudhuri, Bidyut Baran. 2021.
A comprehensive survey and performance analysis of activation functions
in deep learning. arXiv preprint arXiv:2109.14545.

Duchi, John, Hazan, Elad, and Singer, Yoram. 2011. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of ma-
chine learning research, 12(7).

Duda, Richard O, Hart, Peter E, et al. 1973. Pattern classification and scene
analysis. Vol. 3. Wiley New York.

Dyer, Chris, Ballesteros, Miguel, Ling, Wang, Matthews, Austin, and Smith,
Noah A. 2015. Transition-based dependency parsing with stack long
short-term memory. arXiv preprint arXiv:1505.08075.

Edmonds, Jack. 1967. Optimum branchings. Journal of Research of the Na-
tional Bureau of Standards B, 71(4), 233–240.

Eisner, Jason M. 1996. Three New Probabilistic Models for Dependency Pars-
ing: An Exploration. In: COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics.

Elman, Jeffrey L. 1990. Finding structure in time. Cognitive science, 14(2),
179–211.

Fernández-González, Daniel, and Gómez-Rodríguez, Carlos. 2019. Left-to-
Right Dependency Parsing with Pointer Networks. Pages 710–716 of:
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics.

Ferrer-i Cancho, R., and McCowan, B. 2009. A Law of Word Meaning in
Dolphin Whistle Types. Entropy, 11, 688–701.

Finkel, Jenny Rose, Grenager, Trond, and Manning, Christopher D. 2005.
Incorporating non-local information into information extraction systems
by gibbs sampling. Pages 363–370 of: Proceedings of the 43rd annual
meeting of the association for computational linguistics (ACL’05).

Firth, John R. 1957. A synopsis of linguistic theory, 1930-1955. Studies in
linguistic analysis.

Fowler, Henry Watson. 1994. A dictionary of modern English usage.
Wordsworth Editions.

Francis, Winthrop Nelson. 1964. A Standard Sample of Present-day English
for Use with Digital Computers.

Galley, Michel, and Manning, Christopher D. 2009. Quadratic-time depen-
dency parsing for machine translation. Pages 773–781 of: Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th



Bibliography 343

International Joint Conference on Natural Language Processing of the
AFNLP.

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James. 2018. Word
embeddings quantify 100 years of gender and ethnic stereotypes. Pro-
ceedings of the National Academy of Sciences, 115(16), E3635–E3644.

Glorot, Xavier, and Bengio, Yoshua. 2010. Understanding the difficulty of
training deep feedforward neural networks. Pages 249–256 of: Proceedings
of the thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. 2011. Deep sparse rec-
tifier neural networks. Pages 315–323 of: Proceedings of the fourteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings.

Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron, and Bengio, Yoshua. 2016.
Deep learning. MIT press Cambridge.

Greene, Stephan, and Resnik, Philip. 2009. More than words: Syntactic pack-
aging and implicit sentiment. Pages 503–511 of: Proceedings of human
language technologies: The 2009 annual conference of the north american
chapter of the association for computational linguistics.

Griffiths, Dawn. 2008. Head first statistics. O’Reilly Germany.
Hajic, Jan, Ciaramita, Massimiliano, Johansson, Richard, Kawahara, Daisuke,

Martí, M Antònia, Màrquez, Lluís, Meyers, Adam, Nivre, Joakim, Padó,
Sebastian, Štěpánek, Jan, et al. 2009. The CoNLL-2009 shared task:
Syntactic and semantic dependencies in multiple languages. Pages 1–18
of: Proceedings of the Thirteenth Conference on Computational Natural
Language Learning (CoNLL 2009): Shared Task.

Harris, Zellig S. 1954. Distributional structure. Word, 10(2-3), 146–162.
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. 2015. Delv-

ing deep into rectifiers: Surpassing human-level performance on imagenet
classification. Pages 1026–1034 of: Proceedings of the IEEE international
conference on computer vision.

He, Pengcheng, Liu, Xiaodong, Gao, Jianfeng, and Chen, Weizhu. 2020.
Deberta: Decoding-enhanced bert with disentangled attention. arXiv
preprint arXiv:2006.03654.

Hochreiter, Sepp, and Schmidhuber, Jürgen. 1997. Long short-term memory.
Neural computation, 9(8), 1735–1780.

Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward net-
works. Neural networks, 4(2), 251–257.

Ioffe, Sergey, and Szegedy, Christian. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. Pages 448–456
of: International conference on machine learning. PMLR.

Ivakhnenko, Alekseĭ Grigor�evich, and Lapa, Valentin Grigorévich. 1966. Cy-
bernetic predicting devices. Tech. rept. PURDUE UNIV LAFAYETTE
IND SCHOOL OF ELECTRICAL ENGINEERING.

Iyyer, Mohit, Manjunatha, Varun, Boyd-Graber, Jordan, and Daumé III, Hal.
2015. Deep unordered composition rivals syntactic methods for text clas-
sification. Pages 1681–1691 of: Proceedings of the 53rd annual meeting



344 Bibliography

of the association for computational linguistics and the 7th international
joint conference on natural language processing (volume 1: Long papers).

Jarrett, Kevin, Kavukcuoglu, Koray, Ranzato, Marc’Aurelio, and LeCun,
Yann. 2009. What is the best multi-stage architecture for object recog-
nition? Pages 2146–2153 of: 2009 IEEE 12th international conference on
computer vision. IEEE.

Jiao, Xiaoqi, Yin, Yichun, Shang, Lifeng, Jiang, Xin, Chen, Xiao, Li, Linlin,
Wang, Fang, and Liu, Qun. 2019. Tinybert: Distilling bert for natural
language understanding. arXiv preprint arXiv:1909.10351.

Jurafsky, Daniel, and Martin, James H. 2009. Speech and Language Processing
(second edition). Prentice Hall.

Jurafsky, Daniel, and Martin, James H. 2022. Speech and language processing
(3rd ed. draft). https://web.stanford.edu/~jurafsky/slp3. Accessed:
2022-06-17.

Kahneman, Daniel. 2011. Thinking, fast and slow. Macmillan.
Kahneman, Daniel, Sibony, Olivier, and Sustein, Cass R. 2021. Noise: A Flaw

in Human Judgment. Little, Brown Spark; Hachette Book Group.
Kalchbrenner, Nal, and Blunsom, Phil. 2013. Recurrent continuous transla-

tion models. Pages 1700–1709 of: Proceedings of the 2013 conference on
empirical methods in natural language processing.

Karpukhin, Vladimir, Oguz, Barlas, Min, Sewon, Lewis, Patrick, Wu, Ledell,
Edunov, Sergey, Chen, Danqi, and Yih, Wen-tau. 2020. Dense Passage
Retrieval for Open-Domain Question Answering. Pages 6769–6781 of:
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Online: Association for Computational
Linguistics.

Kelley, Henry J. 1960. Gradient theory of optimal flight paths. Ars Journal,
30(10), 947–954.

Khandelwal, Urvashi, He, He, Qi, Peng, and Jurafsky, Dan. 2018. Sharp
nearby, fuzzy far away: How neural language models use context. arXiv
preprint arXiv:1805.04623.

Khashabi, Daniel, Chaturvedi, Snigdha, Roth, Michael, Upadhyay, Shyam,
and Roth, Dan. 2018. Looking beyond the surface: A challenge set for
reading comprehension over multiple sentences. Pages 252–262 of: Pro-
ceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers).

Khot, Tushar, Clark, Peter, Guerquin, Michal, Jansen, Peter, and Sabharwal,
Ashish. 2020. Qasc: A dataset for question answering via sentence com-
position. Pages 8082–8090 of: Proceedings of the AAAI Conference on
Artificial Intelligence.

Kiat, Lim Swee. 2021. Attention Primer. https://github.com/greentfrapp/
attention-primer/blob/master/1_counting-letters/README.md. Ac-
cessed: 2021-11-22.

Kingma, Diederik P, and Ba, Jimmy. 2015. Adam: A method for stochastic
optimization. Pages 1–13 of: Proceedings of the 3rd International Con-
ference for Learning Representations (ICLR).

https://web.stanford.edu/~jurafsky/slp3
https://github.com/greentfrapp/attention-primer/blob/master/1_counting-letters/README.md
https://github.com/greentfrapp/attention-primer/blob/master/1_counting-letters/README.md


Bibliography 345

Kiperwasser, Eliyahu, and Goldberg, Yoav. 2016. Simple and accurate depen-
dency parsing using bidirectional LSTM feature representations. Trans-
actions of the Association for Computational Linguistics, 4, 313–327.

Kitaev, Nikita, Kaiser, Lukasz, and Levskaya, Anselm. 2020. Reformer: The
Efficient Transformer. In: International Conference on Learning Repre-
sentations.

Knight, Kevin. 2009. Bayesian Inference with Tears. https://www.isi.edu/
natural-language/people/bayes-with-tears.pdf. Accessed: 2019-10-
19.

Koehn, Philipp. 2009. Statistical machine translation. Cambridge University
Press.

Krallinger, Martin, Leitner, Florian, Rodriguez-Penagos, Carlos, and Valencia,
Alfonso. 2008. Overview of the protein-protein interaction annotation
extraction task of BioCreative II. Genome biology, 9(2), 1–19.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. 2012. Imagenet
classification with deep convolutional neural networks. Pages 1097–1105
of: Advances in neural information processing systems.

Kruskal, Joseph B. 1983. An overview of sequence comparison: Time warps,
string edits, and macromolecules. SIAM review, 25(2), 201–237.

Lafferty, John, McCallum, Andrew, and Pereira, Fernando CN. 2001. Con-
ditional random fields: Probabilistic models for segmenting and labeling
sequence data.

Lample, Guillaume, Ballesteros, Miguel, Subramanian, Sandeep, Kawakami,
Kazuya, and Dyer, Chris. 2016. Neural Architectures for Named Entity
Recognition. Pages 260–270 of: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. San Diego, California: Association
for Computational Linguistics.

Lefkowitz, Melanie. 2019. Professor’s perceptron paved the way for AI
– 60 years too soon. https://news.cornell.edu/stories/2019/
09/professors-perceptron-paved-way-ai-60-years-too-soon. Ac-
cessed: 2022-07-11.

Leshno, Moshe, Lin, Vladimir Ya, Pinkus, Allan, and Schocken, Shimon. 1993.
Multilayer feedforward networks with a nonpolynomial activation func-
tion can approximate any function. Neural networks, 6(6), 861–867.

Levy, Omer, and Goldberg, Yoav. 2014. Dependency-based word embeddings.
Pages 302–308 of: Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers).

Levy, Omer, Goldberg, Yoav, and Dagan, Ido. 2015. Improving distributional
similarity with lessons learned from word embeddings. Transactions of
the Association for Computational Linguistics, 3, 211–225.

Li, Xin, and Roth, Dan. 2002. Learning question classifiers. In: COLING
2002: The 19th International Conference on Computational Linguistics.

Lin, Dekang. 1997. Using syntactic dependency as local context to resolve
word sense ambiguity. Pages 64–71 of: 35th Annual Meeting of the Asso-
ciation for Computational Linguistics and 8th Conference of the European
Chapter of the Association for Computational Linguistics.

https://www.isi.edu/natural-language/people/bayes-with-tears.pdf
https://www.isi.edu/natural-language/people/bayes-with-tears.pdf
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon 
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon 


346 Bibliography

Ling, Xiao, and Weld, Daniel S. 2012. Fine-grained entity recognition. In:
Twenty-Sixth AAAI Conference on Artificial Intelligence.

Linnainmaa, Seppo. 1970. The representation of the cumulative rounding error
of an algorithm as a Taylor expansion of the local rounding errors. Ph.D.
thesis, Master’s Thesis (in Finnish), Univ. Helsinki.

Liu, Yinhan, Ott, Myle, Goyal, Naman, Du, Jingfei, Joshi, Mandar, Chen,
Danqi, Levy, Omer, Lewis, Mike, Zettlemoyer, Luke, and Stoyanov,
Veselin. 2019. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christopher D. 2015. Ef-
fective approaches to attention-based neural machine translation. arXiv
preprint arXiv:1508.04025.

Maas, Andrew L., Daly, Raymond E., Pham, Peter T., Huang, Dan, Ng, An-
drew Y., and Potts, Christopher. 2011. Learning Word Vectors for Senti-
ment Analysis. Pages 142–150 of: Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language
Technologies. Portland, Oregon, USA: Association for Computational
Linguistics.

Maas, Andrew L, Hannun, Awni Y, Ng, Andrew Y, et al. 2013. Rectifier
nonlinearities improve neural network acoustic models. In: Proceedings
of ICML. Atlanta, Georgia, USA.

Manning, Christopher D. 2011. Part-of-speech tagging from 97% to 100%: is
it time for some linguistics? Pages 171–189 of: International conference
on intelligent text processing and computational linguistics. Springer.

Manning, Christopher D. 2015. Computational linguistics and deep learning.
Computational Linguistics, 41(4), 701–707.

Marcinkiewicz, Mary Ann. 1994. Building a large annotated corpus of English:
The Penn Treebank. Using Large Corpora, 273.

Marcus, Gary, and Davis, Ernest. 2019. Rebooting AI: Building Artificial
Intelligence We Can Trust. Penguin Random House.

Matilal, Bimal Krishna. 1990. The word and the world: India’s contribution
to the study of language.

McCulloch, Warren S, and Pitts, Walter. 1943. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4), 115–133.

McDonald, Ryan, Pereira, Fernando, Ribarov, Kiril, and Hajic, Jan. 2005.
Non-projective dependency parsing using spanning tree algorithms. Pages
523–530 of: Proceedings of human language technology conference and
conference on empirical methods in natural language processing.

Mehrabi, Ninareh, Morstatter, Fred, Saxena, Nripsuta, Lerman, Kristina, and
Galstyan, Aram. 2021. A survey on bias and fairness in machine learning.
ACM Computing Surveys (CSUR), 54(6), 1–35.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff.
2013a. Distributed Representations of Words and Phrases and their Com-
positionality. Pages 3111–3119 of: Burges, C. J. C., Bottou, L., Welling,
M., Ghahramani, Z., and Weinberger, K. Q. (eds), Advances in Neural
Information Processing Systems, vol. 26. Curran Associates, Inc.



Bibliography 347

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff.
2013b. Distributed representations of words and phrases and their com-
positionality. Advances in neural information processing systems, 26.

Minsky, Marvin, and Papert, Seymour. 1969. Perceptron: an introduction to
computational geometry. The MIT Press, Cambridge, expanded edition,
19(88), 2.

Mintz, Mike, Bills, Steven, Snow, Rion, and Jurafsky, Dan. 2009. Distant
supervision for relation extraction without labeled data. Pages 1003–1011
of: Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP.

Mithun, Mitch, Suntwal, Sandeep, and Surdeanu, Mihai. 2021. Data and
Model Distillation as a Solution for Domain-transferable Fact Verifica-
tion. In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies.

Moschitti, Alessandro. 2006. Efficient convolution kernels for dependency and
constituent syntactic trees. Pages 318–329 of: European Conference on
Machine Learning. Springer.

Mrkšić, Nikola, Ó Séaghdha, Diarmuid, Thomson, Blaise, Gašić, Milica, Rojas-
Barahona, Lina M., Su, Pei-Hao, Vandyke, David, Wen, Tsung-Hsien, and
Young, Steve. 2016. Counter-fitting Word Vectors to Linguistic Con-
straints. Pages 142–148 of: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. San Diego, California: Association
for Computational Linguistics.

Nair, Vinod, and Hinton, Geoffrey E. 2010. Rectified Linear Units Improve
Restricted Boltzmann Machines. Pages 807–814 of: ICML.

Nesterov, Yurii. 1983. A method for unconstrained convex minimization prob-
lem with the rate of convergence O(1/k2). Pages 543–547 of: Doklady
ANSSSR, vol. 269.

Ng, Andrew. 2019. Stanford University’s CS229: Machine Learning. https://
cs229.stanford.edu/syllabus-fall2020.html. Accessed: 2022-07-11.

Nielsen, Michael. 2019. Neural Networks and Deep Learning. http://
neuralnetworksanddeeplearning.com. Accessed: 2022-07-13.

Nivre, Joakim. 2003 (Apr.). An Efficient Algorithm for Projective Depen-
dency Parsing. Pages 149–160 of: Proceedings of the Eighth International
Conference on Parsing Technologies.

Nivre, Joakim, De Marneffe, Marie-Catherine, Ginter, Filip, Goldberg, Yoav,
Hajic, Jan, Manning, Christopher D, McDonald, Ryan, Petrov, Slav,
Pyysalo, Sampo, Silveira, Natalia, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. Pages 1659–1666 of: Proceedings
of the Tenth International Conference on Language Resources and Eval-
uation (LREC’16).

Nivre, Joakim, de Marneffe, Marie-Catherine, Ginter, Filip, Hajič, Jan, Man-
ning, Christopher D, Pyysalo, Sampo, Schuster, Sebastian, Tyers, Fran-

https://cs229.stanford.edu/syllabus-fall2020.html
https://cs229.stanford.edu/syllabus-fall2020.html
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com


348 Bibliography

cis, and Zeman, Daniel. 2020. Universal Dependencies v2: An evergrowing
multilingual treebank collection. arXiv preprint arXiv:2004.10643.

Novikoff, Albert B. 1963. On convergence proofs for perceptrons. Tech. rept.
Stanford Research Institute.

Olah, Christopher. 2015. Understanding LSTM Networks. http://colah.
github.io/posts/2015-08-Understanding-LSTMs/. Accessed: 2021-01-
14.

Ontanón, Santiago, Ainslie, Joshua, Cvicek, Vaclav, and Fisher, Zachary.
2021. Making transformers solve compositional tasks. arXiv preprint
arXiv:2108.04378.

Pang, Bo, Lee, Lillian, et al. 2008. Opinion mining and sentiment analysis.
Foundations and Trends® in information retrieval, 2(1–2), 1–135.

Papineni, Kishore, Roukos, Salim, Ward, Todd, and Zhu, Wei-Jing. 2002. Bleu:
a method for automatic evaluation of machine translation. Pages 311–
318 of: Proceedings of the 40th annual meeting of the Association for
Computational Linguistics.

Pearl, Raymond, and Reed, Lowell J. 1920. On the rate of growth of the
population of the United States since 1790 and its mathematical repre-
sentation. Proceedings of the national academy of sciences, 6(6), 275–288.

Pennington, Jeffrey, Socher, Richard, and Manning, Christopher D. 2014.
GloVe: Global Vectors for Word Representation. Pages 1532–1543 of:
Empirical Methods in Natural Language Processing (EMNLP).

Petrov, Slav, Das, Dipanjan, and McDonald, Ryan. 2011. A universal part-of-
speech tagset. arXiv preprint arXiv:1104.2086.

Polyak, Boris T. 1964. Some methods of speeding up the convergence of
iteration methods. Ussr computational mathematics and mathematical
physics, 4(5), 1–17.

Qian, Ning. 1999. On the momentum term in gradient descent learning algo-
rithms. Neural networks, 12(1), 145–151.

Raffel, Colin, Shazeer, Noam, Roberts, Adam, Lee, Katherine, Narang, Sha-
ran, Matena, Michael, Zhou, Yanqi, Li, Wei, Liu, Peter J, et al. 2020.
Exploring the limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140), 1–67.

Raghavan, Prabhakar. 2020. How AI is powering a more helpful Google. https:
//blog.google/products/search/search-on/. Accessed: 2022-06-08.

Raina, Rajat, Madhavan, Anand, and Ng, Andrew Y. 2009. Large-scale deep
unsupervised learning using graphics processors. Pages 873–880 of: Pro-
ceedings of the 26th annual international conference on machine learning.

Rajpurkar, Pranav, Zhang, Jian, Lopyrev, Konstantin, and Liang, Percy. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. Pages
2383–2392 of: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. Austin, Texas: Association for Compu-
tational Linguistics.

Rajpurkar, Pranav, Jia, Robin, and Liang, Percy. 2018. Know What You
Don’t Know: Unanswerable Questions for SQuAD. Pages 784–789 of:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://blog.google/products/search/search-on/
https://blog.google/products/search/search-on/


Bibliography 349

Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Melbourne, Australia:
Association for Computational Linguistics.

Ramshaw, Lance A, and Marcus, Mitchell P. 1999. Text chunking using
transformation-based learning. Pages 157–176 of: Natural language pro-
cessing using very large corpora. Springer.

Ratinov, Lev, and Roth, Dan. 2009. Design challenges and misconceptions
in named entity recognition. Pages 147–155 of: Proceedings of the
Thirteenth Conference on Computational Natural Language Learning
(CoNLL-2009).

Reed, Lowell Jacob, and Berkson, Joseph. 1929. The application of the logistic
function to experimental data. The Journal of Physical Chemistry, 33(5),
760–779.

Resnik, Philip Stuart. 1993. Selection and information: A class-based approach
to lexical relationships. University of Pennsylvania.

Rosenblatt, Frank. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6), 386.

Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. 1985.
Learning internal representations by error propagation. Tech. rept. Cali-
fornia Univ. San Diego La Jolla Inst for Cognitive Science.

Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. 1986.
Learning representations by back-propagating errors. Nature, 323(6088),
533–536.

Sanh, Victor, Debut, Lysandre, Chaumond, Julien, and Wolf, Thomas. 2019.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108.

Schmidhuber, Jürgen. 1992. Learning complex, extended sequences using the
principle of history compression. Neural Computation, 4(2), 234–242.

Schütze, Hinrich. 1992. Word space. Advances in neural information processing
systems, 5.

Schütze, Hinrich, Manning, Christopher D, and Raghavan, Prabhakar. 2008.
Introduction to information retrieval. Page 260 of: Proceedings of the in-
ternational communication of association for computing machinery con-
ference.

Sellam, Thibault, Das, Dipanjan, and Parikh, Ankur P. 2020. BLEURT:
Learning robust metrics for text generation. Pages 7881–7892 of: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational
Linguistics.

Sennrich, Rico, Haddow, Barry, and Birch, Alexandra. 2015. Neural ma-
chine translation of rare words with subword units. arXiv preprint
arXiv:1508.07909.

Shannon, Claude Elwood. 1948. A mathematical theory of communication.
The Bell system technical journal, 27(3), 379–423.

Shwartz, Vered. 2019. A Systematic Comparison of English Noun Compound
Representations. Pages 92–103 of: Proceedings of the Joint Workshop on
Multiword Expressions and WordNet (MWE-WN 2019). Florence, Italy:
Association for Computational Linguistics.



350 Bibliography

Smith, Larry, Tanabe, Lorraine K, Kuo, Cheng-Ju, Chung, I, Hsu, Chun-Nan,
Lin, Yu-Shi, Klinger, Roman, Friedrich, Christoph M, Ganchev, Kuzman,
Torii, Manabu, et al. 2008. Overview of BioCreative II gene mention
recognition. Genome biology, 9(2), 1–19.

Soares, Livio Baldini, FitzGerald, Nicholas, Ling, Jeffrey, and Kwiatkowski,
Tom. 2019. Matching the blanks: Distributional similarity for relation
learning. arXiv preprint arXiv:1906.03158.

Socher, Richard, Perelygin, Alex, Wu, Jean, Chuang, Jason, Manning, Christo-
pher D, Ng, Andrew Y, and Potts, Christopher. 2013. Recursive deep
models for semantic compositionality over a sentiment treebank. Pages
1631–1642 of: Proceedings of the 2013 conference on empirical methods
in natural language processing.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and
Salakhutdinov, Ruslan. 2014. Dropout: A Simple Way to Prevent Neu-
ral Networks from Overfitting. Journal of Machine Learning Research,
15(56), 1929–1958.

Sundheim, Beth M. 1992. Overview of the fourth message understanding evalu-
ation and conference. Tech. rept. NAVAL COMMAND CONTROL AND
OCEAN SURVEILLANCE CENTER RDT AND E DIV SAN DIEGO
CA.

Suntwal, Sandeep, Paul, Mithun, Sharp, Rebecca, and Surdeanu, Mihai. 2019.
On the Importance of Delexicalization for Fact Verification. Pages 3413–
3418 of: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics.

Surdeanu, Mihai, Johansson, Richard, Meyers, Adam, Màrquez, Lluís, and
Nivre, Joakim. 2008. The CoNLL 2008 shared task on joint parsing of
syntactic and semantic dependencies. Pages 159–177 of: CoNLL 2008:
Proceedings of the Twelfth Conference on Computational Natural Lan-
guage Learning.

Surdeanu, Mihai, Ciaramita, Massimiliano, and Zaragoza, Hugo. 2011. Learn-
ing to Rank Answers to Non-Factoid Questions from Web Collections.
Computational Linguistics, 37(2).

Sutskever, Ilya, Martens, James, Dahl, George, and Hinton, Geoffrey. 2013. On
the importance of initialization and momentum in deep learning. Pages
1139–1147 of: International conference on machine learning. PMLR.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. 2014. Sequence to sequence
learning with neural networks. Advances in neural information processing
systems, 27.

Swanson, Don R. 1986. Undiscovered public knowledge. The Library Quar-
terly, 103–118.

Taulé, Mariona, Martí, M. Antònia, and Recasens, Marta. 2008. AnCora:
Multilevel Annotated Corpora for Catalan and Spanish. In: Proceedings
of the Sixth International Conference on Language Resources and Eval-
uation (LREC’08). Marrakech, Morocco: European Language Resources
Association (ELRA).



Bibliography 351

Tikhonov, Andrey Nikolayevich. 1943. On the stability of inverse problems.
Doklady Akademii Nauk SSSR, 39(5), 195–198.

Tjong Kim Sang, Erik F. 2002. Introduction to the CoNLL-2002 Shared Task:
Language-Independent Named Entity Recognition. In: COLING-02: The
6th Conference on Natural Language Learning 2002 (CoNLL-2002).

Tjong Kim Sang, Erik F., and De Meulder, Fien. 2003. Introduction to the
CoNLL-2003 Shared Task: Language-Independent Named Entity Recog-
nition. Pages 142–147 of: Proceedings of the Seventh Conference on Nat-
ural Language Learning at HLT-NAACL 2003.

Vacareanu, Robert, Barbosa, George Caique Gouveia, Valenzuela-Escarcega,
Marco A, and Surdeanu, Mihai. 2020a. Parsing as tagging. Pages 5225–
5231 of: Proceedings of The 12th Language Resources and Evaluation
Conference.

Vacareanu, Robert, Valenzuela-Escarcega, Marco A., Sharp, Rebecca, and Sur-
deanu, Mihai. 2020b. An Unsupervised Method for Learning Represen-
tations of Multi-word Expressions for Semantic Classification. In: The
28th International Conference on Computational Linguistics in Barcelona
(COLING 2020).

Valenzuela-Escárcega, Marco A, Hahn-Powell, Gus, Surdeanu, Mihai, and
Hicks, Thomas. 2015. A domain-independent rule-based framework for
event extraction. Pages 127–132 of: Proceedings of ACL-IJCNLP 2015
System Demonstrations.

Valenzuela-Escárcega, Marco A., Babur, Ozgun, Hahn-Powell, Gus, Bell,
Dane, Hicks, Thomas, Noriega-Atala, Enrique, Wang, Xia, Surdeanu,
Mihai, Demir, Emek, and Morrison, Clayton T. 2018. Large-scale Au-
tomated Machine Reading Discovers New Cancer Driving Mechanisms.
Database: The Journal of Biological Databases and Curation.

Vardakas, Konstantinos Z., Tsopanakis, Grigorios, Poulopoulou, Alexandra,
and Falagas, Mathew E. 2015. An analysis of factors contributing to
PubMed’s growth. Journal of Informetrics, 9(3), 592–617.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, Kaiser, Łukasz, and Polosukhin, Illia. 2017. Attention
is all you need. Pages 5998–6008 of: Advances in neural information
processing systems.

Verhulst, PF. 1845. La loi d’accroissement de la population. Nouveaux Mem-
ories de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles,
18, 14–54.

Verhulst, Pierre-François. 1838. Notice sur la loi que la population suit dans
son accroissement. Corresp. Math. Phys., 10, 113–126.

Viterbi, Andrew J. 2006. A personal history of the Viterbi algorithm. IEEE
Signal Processing Magazine, 23(4), 120–142.

Vulić, Ivan, and Mrkšić, Nikola. 2018. Specialising Word Vectors for Lexical
Entailment. Pages 1134–1145 of: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers).
New Orleans, Louisiana: Association for Computational Linguistics.



352 Bibliography

Wang, Sinong, Li, Belinda Z, Khabsa, Madian, Fang, Han, and Ma, Hao.
2020. Linformer: Self-attention with linear complexity. arXiv preprint
arXiv:2006.04768.

Warstadt, Alex, Singh, Amanpreet, and Bowman, Samuel R. 2018. Neural
Network Acceptability Judgments. arXiv preprint arXiv:1805.12471.

Werbos, Paul J. 1982. Applications of advances in nonlinear sensitivity anal-
ysis. Pages 762–770 of: System modeling and optimization. Springer.

Werbos, Paul J. 1990. Backpropagation through time: what it does and how
to do it. Proceedings of the IEEE, 78(10), 1550–1560.

Wikipedia. Garden-path Sentence. https://en.wikipedia.org/wiki/
Garden-path_sentence. Accessed: 2021-01-21.

Williams, Philip, Sennrich, Rico, Post, Matt, and Koehn, Philipp. 2016.
Syntax-based Statistical Machine Translation. Morgan & Claypool (Syn-
thesis Lectures on Human Language Technologies, edited by Graeme
Hirst).

Wilson, D Randall, and Martinez, Tony R. 2003. The general inefficiency of
batch training for gradient descent learning. Neural networks, 16(10),
1429–1451.

Xue, Linting, Constant, Noah, Roberts, Adam, Kale, Mihir, Al-Rfou, Rami,
Siddhant, Aditya, Barua, Aditya, and Raffel, Colin. 2020. mT5: A mas-
sively multilingual pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Yadav, Vikas, Bethard, Steven, and Surdeanu, Mihai. 2019a (6). Alignment
over Heterogeneous Embeddings for Question Answering. Pages 2681–
2691 of: Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Yadav, Vikas, Bethard, Steven, and Surdeanu, Mihai. 2019b (November).
Quick and (not so) Dirty: Unsupervised Selection of Justification Sen-
tences for Multi-hop Question Answering. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing,
(Long Papers).

Yarowsky, David. 1992. Word-sense disambiguation using statistical models
of Roget’s categories trained on large corpora. In: COLING 1992 Volume
2: The 14th International Conference on Computational Linguistics.

Young, Ed. 2009. The Real Wisdom of the Crowds.
https://www.nationalgeographic.com/science/article/
the-real-wisdom-of-the-crowds. Accessed: 2021-06-04.

Young, Tom, Hazarika, Devamanyu, Poria, Soujanya, and Cambria, Erik.
2018. Recent trends in deep learning based natural language process-
ing. IEEE Computational intelligence magazine, 13(3), 55–75.

Yu, Mo, and Dredze, Mark. 2015. Learning composition models for phrase em-
beddings. Transactions of the Association for Computational Linguistics,
3, 227–242.

Yule, G. Udney. 1925. The Growth of Population and the Factors which
Control It. Journal of the Royal Statistical Society, 38, 1–59.

https://en.wikipedia.org/wiki/Garden-path_sentence
https://en.wikipedia.org/wiki/Garden-path_sentence
https://www.nationalgeographic.com/science/article/the-real-wisdom-of-the-crowds
https://www.nationalgeographic.com/science/article/the-real-wisdom-of-the-crowds


Bibliography 353

Zaheer, Manzil, Guruganesh, Guru, Dubey, Kumar Avinava, Ainslie, Joshua,
Alberti, Chris, Ontanon, Santiago, Pham, Philip, Ravula, Anirudh,
Wang, Qifan, Yang, Li, and Ahmed, Amr. 2020. Big Bird: Transformers
for Longer Sequences. Pages 17283–17297 of: Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M.F., and Lin, H. (eds), Advances in Neural
Information Processing Systems, vol. 33. Curran Associates, Inc.

Zeiler, Matthew D. 2012. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701.

Zhang, Xiang, Zhao, Junbo, and LeCun, Yann. 2015. Character-level Convolu-
tional Networks for Text Classification. Advances in Neural Information
Processing Systems, 28.

Zhang, Yuhao, Zhong, Victor, Chen, Danqi, Angeli, Gabor, and Manning,
Christopher D. 2017. Position-aware Attention and Supervised Data Im-
prove Slot Filling. Pages 35–45 of: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2017).

Zipf, George Kingsley. 1932. Selected studies of the principle of relative fre-
quency in language.





Index

activation functions
hyperbolic tangent, 103
Leaky ReLU, 105
logistic, 33
rectified linear unit, 104
ReLU, 104
sigmoid, 33
softmax, 47, 82
tanh, 103

applications
dependency parsing, 280

Universal dependency types, 281
machine translation, 252, 296

fine-tuning, 261
greedy decoding, 259

named entity recognition, 278
annotation schemas, 279

part-of-speech tagging, 162
recurrent neural networks, 190, 276
transformer networks, 225, 276
Universal tags, 275

question answering, 291
extractive, 292
multiple-choice, 294

relation extraction, 286
text classification, 12

bag of words, 13, 120
distributional representations, 155,

271
recurrent neural networks, 272
transformer networks, 217, 273

back-propagation
equations, 85

classification task
binary, 11

multiclass, 11
classifier, 11
common rules of computation for

derivatives, 45
cosine similarity, 20
cost functions

binary cross entropy, 48, 108
cross entropy, 48, 109
mean squared error, 86, 106
negative log likelihood, 37
regularization, 109

curse of dimensionality, 129
dataset partitions

development, 12
testing, 12
training, 12

datasets
AG News, 70, 118
AnCora, 183
Large Movie Review Dataset, 56
WMT 2016, 252

distributional hypothesis, 130
distributional representations

co-occurrence vectors, 130
low-rank approximations, 133
pre-trained word embeddings, 146
singular value decomposition, 133
word analogies, 149, 153
word similarity, 148, 151
word2vec, 136

training algorithm, 140
dot product, 17
dynamic programming, 179
error driven learning, 20
evaluation measures

355



356 Index

accuracy, 13
binary F1, 15
binary precision, 15
binary recall, 15
BLEU, 239
class precision, 50
class recall, 50
macro F1, 50
macro precision, 50
macro recall, 50
micro F1, 51
micro precision, 51
micro recall, 51

features, 10
feature matrix, 11

feed forward neural networks
architecture, 79
input layer, 81
intermediate layers, 81
output layer, 82
PyTorch implementation, 120

gradient descent, 38
AdaDelta, 102
AdaGrad, 102
Adam, 102
adaptive learning rate, 101
batch, 96
mini-batch, 98
momentum, 99
Nesterov momentum, 100
RMSProp, 102
stochastic, 42, 84, 95

labels, 11
label vector, 11

logistic regression
binary cost function, 42
decision function, 33
drawbacks, 52
multiclass cost function, 48
NumPy implementation, 64
PyTorch implementation, 67, 75
training algorithm, 34, 42, 49

model, 18
non-linear classifier, 25
overfitting, 12, 92
parameter initialization, 114

Glorot, 114
Xavier, 114

parameter normalization, 115

batch normalization, 115
layer normalization, 115

perceptron
average perceptron, 26
bias term, 23
decision boundary and convergence,

21
decision function, 17
definition, 16
drawbacks, 28
NumPy implementation, 60
training algorithm, 18
voting perceptron, 24

recurrent neural networks
acceptor, 164
bidirectional, 166
conditional random fields, 171

forward algorithm, 173
Viterbi algorithm, 179

deep, 165
encoder-decoder, 165, 238, 242
encoder-decoder with attention, 244
long short-term memory, 168
LSTM, 168
stacked, 165
transducer, 165
vanilla, 163

regression task, 11
regularization

dropout, 111
L1, 111
L2, 110

temporal averaging, 113
transformer networks

add and normalize, 205
byte pair encoding, 206
contextualized embeddings, 197
encoder-decoder, 247

implementation, 252, 261
fine-tuning, 210
heads, 205
layer architecture, 199
masked language model, 208
next sentence prediction, 209
positional embeddings, 200
pre-training, 208
self attention, 202
tokenization, 206

implementation, 215
vanishing gradient, 92



Index 357

recurrent neural networks, 167
Vauquois triangle, 238
word frequencies, 13
Zipf’s law, 129


	List of illustrations
	List of tables
	Preface
	Preface

	Introduction
	What this Book Covers
	What this Book Does Not Cover
	Deep Learning Is Not Perfect
	Mathematical Notations

	The Perceptron
	Machine Learning Is Easy
	Use Case: Text Classification
	Evaluation Measures for Text Classification
	The Perceptron
	Voting Perceptron
	Average Perceptron
	Drawbacks of the Perceptron
	Historical Background
	References and Further Readings
	Summary

	Logistic Regression
	The Logistic Regression Decision Function and Learning Algorithm
	The Logistic Regression Cost Function
	Gradient Descent
	Deriving the Logistic Regression Update Rule
	From Binary to Multiclass Classification
	Evaluation Measures for Multiclass Text Classification
	Drawbacks of Logistic Regression
	Historical Background
	References and Further Readings
	Summary

	Implementing Text Classification Using Logistic Regression
	Binary Classification
	Multiclass Classification
	Summary

	Feed Forward Neural Networks
	Architecture of Feed Forward Neural Networks
	Learning Algorithm for Neural Networks
	The Equations of Back-propagation
	Drawbacks of Neural Networks (So Far)
	Historical Background
	References and Further Readings
	Summary

	Best Practices in Deep Learning
	Mini-batching
	Other Optimization Algorithms
	Other Activation Functions
	Cost Functions
	Regularization
	Dropout
	Temporal Averaging
	Parameter Initialization and Normalization
	References and Further Readings
	Summary

	Implementing Text Classification with Feed Forward Networks
	Data
	Fully-Connected Neural Network
	Training
	Summary

	Distributional Hypothesis and Representation Learning
	Traditional Distributional Representations
	Matrix Decompositions and Low-rank Approximations
	Drawbacks of Rep. Learning Using Low-Rank Approx.
	The Word2vec Algorithm
	Drawbacks of the Word2vec Algorithm
	Historical Background
	References and Further Readings
	Summary

	Implementing Text Classification Using Word Embeddings
	Pre-trained Word Embeddings
	Text Classification with Pretrained Word Embeddings
	Summary

	Recurrent Neural Networks
	Vanilla Recurrent Neural Networks
	Deep Recurrent Neural Networks
	The Problem with Simple RNNs: Vanishing Gradient
	Long Short-Term Memory Networks
	Conditional Random Fields
	Drawbacks of Recurrent Neural Networks
	Historical Background
	References and Further Readings
	Summary

	Implementing POS Tagging Using RNNs
	Part-of-speech Tagging
	Summary

	Contextualized Embeddings and Transformer Networks
	Architecture of a Transformer Layer
	Sub-word Tokenization
	Training a Transformer Network
	Drawbacks of Transformer Networks
	Historical Background
	References and Further Readings
	Summary

	Using Transformers with the Hugging Face Library
	Tokenization
	Text Classification
	Part-of-speech Tagging
	Summary

	Encoder-decoder Methods
	BLEU: an Evaluation Measure for Machine Translation
	A First Sequence-to-sequence Architecture
	Sequence-to-sequence with Attention
	Transformer-based Encoder-decoder Architectures
	Historical Background
	References and Further Readings
	Summary

	Implementing Encoder-decoder Methods
	Translating English to Romanian
	Implementation of Greedy Generation
	Fine-tuning Romanian to English Translation
	Using a Previously Saved Model
	Summary

	Neural Architectures for NLP Applications
	Text Classification
	Part-of-speech Tagging
	Named Entity Recognition
	Dependency Parsing
	Relation Extraction
	Question Answering
	Machine Translation
	Summary

	to 1.15Appendix AOverview of the Python Language and Key Libraries
	Python
	NumPy
	PyTorch

	to 1.15Appendix BCharacter Encodings: ASCII and Unicode
	How Do Computers Represent Text?
	How to Encode/Decode Characters in Python
	Text Normalization
	Bibliography

	Bibliography
	Index

