
Exploring Interpretability in Event Extraction:
Multitask Learning of a Neural Event Classifier and an Explanation

Decoder

†Zheng Tang, ‡Gustave Hahn-Powell, †Mihai Surdeanu
†Department of Computer Science

‡Department of Linguistics
University of Arizona, Tucson, Arizona, USA

{zhengtang, hahnpowell, msurdeanu}@email.arizona.edu

Abstract
We propose an interpretable approach for
event extraction that mitigates the tension be-
tween generalization and interpretability by
jointly training for the two goals. Our ap-
proach uses an encoder-decoder architecture,
which jointly trains a classifier for event ex-
traction, and a rule decoder that generates
syntactico-semantic rules that explain the de-
cisions of the event classifier. We evaluate
the proposed approach on three biomedical
events and show that the decoder generates
interpretable rules that serve as accurate ex-
planations for the event classifier’s decisions,
and, importantly, that the joint training gen-
erally improves the performance of the event
classifier. Lastly, we show that our approach
can be used for semi-supervised learning, and
that its performance improves when trained on
automatically-labeled data generated by a rule-
based system.

1 Introduction

Interpretability is a key requirement for machine
learning (ML) in many domains, e.g., legal, medi-
cal, finance. In the words of (Ribeiro et al., 2016),
“if users do not trust the model or a prediction, they
will not use it.” However, there is a tension between
generalization and interpretability in deep learning,
as interpretable models are often generated by “dis-
tilling” a model with good generalization, e.g., a
deep learning one that relies on distributed repre-
sentations, into models that are more interpretable
but lose some generalization, e.g., linear models or
decision trees (Craven and Shavlik, 1996; Ribeiro
et al., 2016; Frosst and Hinton, 2017). Here, we
argue that both generalization and interpretability
are equally important. For example, in the medical
space, a patient will likely reject a treatment rec-
ommended by an algorithm without an explanation.
Closer to natural language processing (NLP), a sta-
tistical information extraction method that converts

free text in a specific domain to structured knowl-
edge should also provide human-understandable
explanations of its extractions. This allows the sub-
ject matter expert to quality check such output with-
out a deep knowledge of the underlying machinery,
which is a necessity in successful inter-disciplinary
NLP collaborations.

In this work, we propose an interpretable ap-
proach for event extraction (EE) that mitigates the
tension between generalization and interpretabil-
ity through multitask learning (MTL). Our ap-
proach uses an attention-based encoder to en-
code the input text and given entities of interest
(e.g., proteins in the biomedical domain), and a
decoder that jointly trains two tasks. The first
task is event classification, which identifies which
event applies for a given entity (e.g., phosphory-
lation). The second task decodes a rule in the
Odin language (Valenzuela-Escárcega et al., 2018;
Valenzuela-Escárcega et al., 2016), which explains
the prediction of the classifier in a format that can
be read and understood by human end users. An
example of such a rule is shown in Figure 1. Im-
portantly, both tasks share the same encoder, and
are trained using a joint objective function.

Supporting earlier findings, we observe that joint
training leads to performance improvements both
within and across tasks. In our unique pairing of
tasks, however, we are able to shed light on an
opaque process by generating rules that provide
an interpretable distillation of an event classifier’s
decisions.

The major contributions of this paper are:

(1) A simple neural architecture for EE that jointly
learns to extract events and explain its decisions.
While here we investigate event extraction, we be-
lieve this approach is applicable to many other in-
formation extraction tasks.

(2) We extend a subset of the BioNLP 2013 GENIA

label: Phosphorylation

pattern: |
trigger =

[lemma=/phosphorylation/ & !word=/(?i) (̂de|auto)/]

theme: Protein =
prep_of appos? /nn|conj_(and|or)|cc/{,2}

Label(s) to assign to a match.
Lexical constraints on the event’s predicate.
argName:ArgType, where ArgType indicates the semantic cate-
gory expected for this argument.

Figure 1: An example of an event extraction rule in
the Odin language that extracts phosphorylation events
driven by a nominal trigger (“phosphorylation”). The
event’s sole argument or theme (the phosphorylated
protein) is identified through both semantic constraints
(its type must be Protein), and syntactic ones (it
must be attached to the trigger through a certain syntac-
tic dependency pattern: a prep of followed by an op-
tional (?) appositive (appos), followed by up to two
({,2}) other dependencies, e.g., nn). This rule would
extract a Phosphorylation(PKC) event from the
text “. . . which includes the phosphorylation of PKC
by. . . ”.

event extraction (Kim et al., 2013) dataset with a
set of rules designed to extract and explain three
of the GENIA biomedical events: protein phospho-
rylation, localization, and gene expression. The
result is a parallel dataset that aligns some of the
GENIA event labels with rules that extract them.
We release this dataset1 for reproducibility.

(3) We train and evaluate our approach on this
dataset and demonstrate that: (a) our approach
achieves reasonable event classification perfor-
mance, despite the fact that it uses no syntactic or
part-of-speech information; (b) it decodes explana-
tions with high accuracy, e.g., with a BLEU overlap
score between the generated rules and hand-written
rules of up to 93%, and (c) most importantly, we
show that MTL improves performance over the
individual event classification task. To our knowl-
edge, this is the first work that demonstrates that in-
terpretability improves classification performance.

(4) Our approach can be easily extended to a semi-
supervised setting, where we use the rules associ-
ated with the events of interest to extract additional
training data with “silver” labels, i.e., where we use
the rule predictions as training labels for the classi-
fier. We show that despite the inherent noise in this
process, the performance of our approach improves
considerably in this semi-supervised setting.

1https://github.com/clulab/releases/
tree/master/aclsrw2020-edin/

2 Related Work

Interpretability in machine learning is an area of
active research involving a multitude of approaches.
In this work, we focus on post-hoc interpretations
that explain a model’s output (Lipton, 2016).

A common theme of prior research in inter-
pretable machine learning is producing a definite
decision process (e.g., a decision tree) that pre-
serves generalization. (Craven and Shavlik, 1996)
explored converting a trained network to a decision
tree. Similarly, (Frosst and Hinton, 2017) trained
soft binary decision trees using the predictions of
a neural model. These decision trees are trained
with mini-batch gradient descent using as labels a
trained network’s results. In the same vein, (Che
et al., 2016) proposed a mimic learning framework,
which trains gradient boosting trees to mimic the
soft predictions of the original neural network. One
unaddressed challenge with this direction, however,
is that a decision tree’s interpretability tends to de-
cay as the tree increases in size.

Rather than converting a statistical model into an
interpretable model such as a decision tree, other
efforts have focused on jointly learning a statistical
model with explanations for the model’s output.
Our work falls in this camp as well. (Hendricks
et al., 2016) proposed a system for image clas-
sification that generates a natural language (NL)
explanation to accompany each decision. Similarly,
(Blunsom et al., 2018) learned NL explanations for
the natural language inference (NLI) task, and (Ye
et al., 2018) applied this idea to crime case predic-
tion. Inspired by such approaches, here we learn
to generate declarative information extraction rules
that serve to explain the predictions of an event
classifier.

3 Approach

Our approach jointly addresses classification and
interpretability through an encoder-decoder archi-
tecture, where the decoder uses MTL for event
extraction (Task 1) and rule generation (Task 2). In
this paper, we apply this architecture to the extrac-
tion of unary events in the biomedical domain. The
two tasks are framed as follows:

Task 1 (T1): Given a sentence and an entity in
focus, it must identify which event applies to the
entity, and what is its trigger, i.e., the verbal or
nominal predicates that drives the lexicalization of
the event (e.g., “phosphorylation”).

https://github.com/clulab/releases/tree/master/aclsrw2020-edin/
https://github.com/clulab/releases/tree/master/aclsrw2020-edin/

Task 2 (T2): Decode a rule in the Odin language
that explains the prediction of the event classifier.
That is, the rule should identify the lexical con-
straints on the event trigger, e.g., its lemma, the
semantic type expected of the argument, e.g., that
is must be a Protein, and the syntactic pattern
that connects the event trigger with the argument
(Figure 1 shows a complete example for such a
rule).

Consider this text as a walkthrough example:
which includes the phosphorylation of PKC by . . . ,
where the text in bold indicates the entity that is
provided in the input in this task. This follows
the settings of the standard event extraction task
of BioNLP 2013 (Kim et al., 2013). For Task 1,
we train a series of binary event classifiers (one for
each event type), which predict the position of the
event’s lexical predicate (i.e., trigger) that modifies
each given entity (phosphorylation here). Drawing
upon the state information from Task 1, we prime
our decoder in Task 2 using a contextualized repre-
sentation of the predicted event trigger to generate
an information extraction rule in the Odin language
that captures the same event (i.e., entity-predicate
structure) identified in Task 1 (see Figure 1). We
detail these two tasks next.

3.1 Task 1: Event Classifier

We train a binary event classifier for each event
type, which must identify if the corresponding
event type applies to the entity under considera-
tion, and, if so, which token in the input sentence
is the event’s trigger.

The classifier uses an encoder with entity atten-
tion to encode its input. For each sentence with
words w1, . . . , wn and a given entity z, we asso-
ciate each word i with a representation xi that con-
catenates three embeddings: xi = e(wi) ◦ e(pi) ◦
char(wi), where e(wi) is the word embedding of
token i, pi is the word’s relative position to the
entity under consideration, and char(wi) is the
output of a bidirectional character-level LSTM
(charLSTM) applied over wi. e(wi) is initial-
ized with the pretrained embeddings of (Hahn-
Powell et al., 2016) using the word2vec Skip-gram
model (Mikolov et al., 2013) trained on the full
text of over 1 million biomedical papers taken
from the PubMed Central Open Access Subset.2

while e(pi) and char(wi) are initialized randomly.

2https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

The sequence of xis serves as input to a sentence-
level bidirectional LSTM (biLSTM), whose hidden
states his serve as input to the attention layer below.

The entity-attention layer computes a sequence
of context vectors (the matrix CCC in the equations
below), which weighs the biLSTM’s hidden states
by their importance to the entity z. Our atten-
tion mechanism is inspired by the transformer net-
work (Vaswani et al., 2017). Similarly, we com-
pute the attention function on a set of keys and val-
ues that are packed together into matrices KKK and
VVV . The difference is that our approach is entity-
focused in its query, so we only compute the atten-
tion on a single query vector qqq. Further, unlike the
conventional encoder in a transformer network, we
don’t produce a single vector, but a sequence of
vectors (the matrix CCC).

qqq =WWW qhhhz (1)

KKK =WWW kHHH
E (2)

VVV =WWW vHHH
E (3)

sss = qqqKKK (4)

aaa = softmax(sss) (5)

CCC = VVV � aaa (6)

whereWWW q,WWW k,WWW v are learned matrices of dimen-
sion 200× 200,HHHE contains the biLSTM’s hidden
states, andhhhz is the hidden state of the entity z from
HHHE . We concatenate each context vector (CCCi) with
the entity vector (HHHE

i) and feed the concatenated
vector to two feedforward layers with a softmax
function, and use its output to predict if there is a
trigger in this position. We calculate the classifier’s
loss using the binary log loss function.

3.2 Task 2: Rule Decoder
Inspired by neural machine translation (Luong
et al., 2015), we use another LSTM with attention
as the decoder. To center rule decoding around the
trigger, which must be generated first, we first feed
the trigger vector from the encoder’s context as the
initial state in the decoder. Then, in each timestep
t, we generate the attention context vector CCCD

t by
using the current hidden state of the decoder, hhhDt :

ssst(j) = CCCE
j WWW

AhhhDt (7)

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

aaat = softmax(ssst) (8)

CCCD
t =

∑
j

aaat(j)hhh
E
j (9)

where WWWA is a learned matrix of dimensions 100
× 200, and CCCE are the context vectors from the
previous entity-focused attention layer. Note that
the learned matrix WWWA here is distinct from the
matrices learned in the previous entity-attention
layer. We feed this CCCD

t vector to a single feed for-
ward layer that is coupled with a softmax function.
We predict the next word from a vocabulary ex-
tracted from the existing Odin rules used in our
experiments (see next section for details). During
training, we calculate the decoder’s loss using the
multiclass cross-entropy loss function.

Note that the losses corresponding to these two
tasks are jointly optimized. Formally, the loss func-
tion is defined as:

loss = lossc + lossd (10)

lossc =
∑
i

−(tci log(yi) + (1− tci) log(1− yi)) (11)

lossd =
∑
i

− log(pi) (12)

where lossc is the cross-entropy loss of the event
classifier, which relies on: tc, the target label (i.e.,
1 for positive examples, 0 for negative), and y, the
likelihood predicted by the model. lossd is the
cross-entropy loss of the rule decoder, where i it-
erates over the tokens in the rule, and pi is the de-
coder’s probability of the correct token at position
i.

4 Experiments

4.1 Dataset

We train and evaluate on three events from the
BioNLP 2013 GENIA Events extraction shared
task (Kim et al., 2013): Phosphorylation (P), Local-
ization (L), and Gene Expression (GE). To facilitate
comparison with previous work, we use the stan-
dard training, development, and test partitions from
the original dataset. To generate data for the rule
decoder, we extend this dataset with rules from the
rule-based system of (Valenzuela-Escárcega et al.,
2018), which reported high-precision results for
Phosphorylation (92%). We manually added new
rules using existing syntactic templates that cover

common syntactic forms of subject-verb-object pat-
terns to cover more events. Further, because the
system of Valenzuela-Escárcega et al. (2018) did
not cover L and GE events, we extended it with
rules for these two events. All in all, we used: 32,
20, and 21 rules for P, L, and GE, respectively.
Most of these rules rely on syntactic structures de-
noted in terms of dependency paths to extract event
arguments (see Figure 1 for an example of such a
rule). From these rules, we obtained a token-level
vocabulary for the rule decoder. This poses an ad-
ditional challenge on our decoder, which must now
decode from raw text both the semantics necessary
for these events, and the syntactic patterns needed
to match event arguments. Further, note that these
rules do not have perfect recall, i.e., there are events
in the data that are not covered by rules. In other
words, the two tasks in our MTL framework are
not perfectly aligned: there are data points which
are part of the training examples of T1, but not of
T2 (for those training examples, the loss of decoder
is set to be 0).

In addition to using these rules for explainabil-
ity, we used the rule-based system to generate
additional “silver” training data for these three
events, by using its extractions from a collection of
PubMed publications. From these papers, we ex-
tracted an additional 6592, 6321, and 2056 positive
training examples for P, L, and GE, respectively. To
avoid biasing the classifier to the positive classes,
we also generated 3467, 3532, and 2876 negative
training examples for P, L, and GE by extracting en-
tities assign to extract evented to other event types
in the BioNLP data.

4.2 Evaluation Metrics

We used precision, recall, and F1 scores to measure
the performance of the event extractor (classifier),
and used the BLEU score to measure the quality
of generated rules, i.e., how close they are to the
corresponding gold rules that extracted the same
output. Note that the BLEU score provides an
incomplete evaluation of rule quality. The more
complete solution would be to evaluate these rules
by executing them over free text and verifying the
quality of the extracted output. However, this is not
a trivial process, as some of the decoded rules break
the Odin syntax, and are only executable after a
manual cleanup process. We leave this evaluation
for future work.

Phosphorylation (P) Localization (L) Gene Expression (GE)
Precision Recall F1 Precision Recall F1 Precision Recall F1

Rule baseline 92.68 48.12 63.35 66.13 44.44 53.16 51.08 69.79 58.98
T1 87.78 49.38 63.20 100.00 4.04 7.77 89.32 64.30 74.77
T1 + Silver 62.75 82.50 71.28 54.55 34.34 42.15 68.43 74.31 71.25
T1 + Silver + T2 84.38 68.75 75.77 76.60 39.39 52.03 69.92 71.24 70.58
BioNLP best 83.95 85.62 84.78 86.21 53.54 66.05 91.29 82.55 86.70
BioNLP median 79.83 81.57 80.64 88.55 40.91 55.89 82.58 78.11 80.09

Table 1: Results for the three events in the BioNLP 2013 test partition. T1 and T2 indicate the two tasks in our
MTL approach, i.e., the event classifier and the rule decoder, respectively. Silver indicates that that configuration
used the silver data created by the rule-based system (see §4.1). BioNLP best and median indicate the best/median
results during the 2013 shared task. We do not include T1 + T2 results because in this configuration we observed
that there is not sufficient data to train the decoder.

4.3 Baseline

We compared our proposed methods with the rule-
based baseline proposed by (Valenzuela-Escárcega
et al., 2018). They used their rule-based system
to extract Phosphorylation events in BioNLP 2013
Genia Events (GE) task data using 42 manually
written rules (which we extended for our exper-
iments – see Section 4.1). On the development
partition, they reported a precision of 92.9%, a
recall of 56.0%, and an F1 score of 69.9%. We
also evaluated their system on the formal test parti-
tion and obtained a precision of 84.2%, a recall of
43.8%, and an F1 score of 57.6%. As mentioned
in Section 4.1, we adjusted the grammar in this
system to cover gene expression and localization
events. The complete results for this system are
listed in Table 1 as “Rule baseline.”

4.4 Results and Discussion

Tables 1 analyzes the performance of our approach
for the three events, compared against the rule-
based system described in §4.1. These results high-
light several important observations:

(1) T1 by itself performs generally worse than the
rule baseline and the median BioNLP result. This
is caused by: (a) the small size of this dataset,
e.g., there are only 117 training examples for P;
and (b) the fact that our approach uses no part-of-
speech (POS) or syntactic information, which have
been shown to be important for this BioNLP task
(Kim et al., 2013). However, adding the silver data
improves T1 performance considerably, e.g., 35 F1
points for Localization. This demonstrates that our
approach provides a simple but effective platform
for semi-supervised learning.

(2) Most importantly, jointly training for classifica-
tion and explainability helps the classification task
(T1) itself. As shown in the tables, combining T1

BLEU Exact
Matches

Non-exact, Explainable
Matches

P 93.80 86.11 2/15
L 83.78 84.33 1/9
GE 78.99 76.45 10/43

Table 2: Evaluation of decoded rules, on the BioNLP develop-
ment partition. BLEU measures the overlap with hand-written
rules. Exact Matches shows the percentage of decoded rules
that exactly match hand-written ones. Explainable Matches
shows the number of decoded rules that do not match exactly
hand-written ones, but were considered good explanations by
human experts.

and T2 generally improves F1 scores considerably,
e.g., 4 F1 points for Phosphorylation and 10 for Lo-
calization. To our knowledge, this is the first NLP
work to demonstrate that aiming for interpretability
also helps the main task addressed. All in all, we ap-
proach the median performance in the shared task,
a respectable result considering that our approach
uses only raw text as input, whereas all participants
in this shared task used some form of syntactic rep-
resentation. Importantly, our approach outperforms
considerably the rule-based method of (Valenzuela-
Escárcega et al., 2018), which served as the starting
point of this work (see Section 4.3).

(3) The only negative results in our experiments
are the GE results in the test partition, where T1
outperforms both T1 + Silver and T1 + Silver
+ T2. We hypothesize that this is caused by the
larger training data for this event, e.g., there are 6
times more training samples for GE than P, which
allows the T1 classifier to learn by itself, without
the scaffolding offered by MTL, and the additional
(noisy) data in the silver dataset. This suggests
that our approach is best suited for EE scenarios
with minimal training data, an important subset of
information extraction tasks.

But are the decoded rules actually interpretable?
To answer this, we compared in Table 2 the de-
coded rules against the hand-written rules that
matched in the BioNLP development partition.

Table 3: Examples of mistakes in the decoded rules. The first column shows hand-written rules, while the second shows
the rules decoded by our approach from sentences where the corresponding hand-written rules matched. We highlight in the
hand-written rules the tokens that were missed during decoding (false negatives) in green, and in the decoded rules we highlight
the spurious tokens (false positives) in red. The first row lists a partial mistake, which does not affect the interpretability of the
decoded rule, since it only misses one token that can be inferred by the human experts from context. The second row lists a
partial mistake, which impacts the semantics of the rule. For example, the decoder missed that the path between the trigger and
the theme argument starts with an optional prop of and appos. This rule was marked as partially correct because some
simple syntactic patterns, e.g., nn, can still be correctly matched by the decoded rule. The last row lists a larger decoding error
that was marked as completely incorrect by the annotator. For example, in the last decoded rule, the decoder generated an
incorrect cause argument, which does not exist in the data, as well as an incorrect syntactic pattern for the theme argument,
i.e., the protein being phosphorylated.

That is, we performed this analysis on the subset of
the development partition, where each data point
is accompanied by a matching hand-written rule.
This reduced this dataset to approximately 60% of
the total BioNLP development set. In particular,
we analyzed 108, 82, and 296 event instances with
matching rules for P, L, and GE events, respec-
tively. The table shows that our rules have high
BLEU overlap with hand-written rules, e.g., 93%
for P, and, by and large, they exactly match them.
We believe this is an exciting result, as it shows
that our approach is able to decode directly from
the raw text the declarative semantics necessary for
the task, as well as the syntactic patterns that match
the event arguments.

Lastly, Table 3 shows examples of typical de-
coding errors, ranging from partial mistakes that
do not affect the interpretability of rules to com-
plete decoding mistakes. As we mentioned above,
we cannot ensure the validation of the generated
rules with our current approach. Table 3 shows that
this indeed happens in our output. For example,
the decoder generates a binary operator such “!=”
without the left operand (first row in the table).

5 Conclusions

We introduced an interpretable approach for event
extraction that jointly trains an event classifier with
a component that translates the classifier’s deci-
sions into interpretable extraction rules. We im-
plemented this approach using an encoder-decoder
architecture, where the decoder jointly optimizes
the decoding of extraction rules and event clas-
sification. We evaluated the proposed approach

on three biomedical events and demonstrated that
the decoder generates interpretable rules, and that
the joint training improves the performance of the
event classifier. We also showed that the perfor-
mance of our approach further improves when
trained on automatically-labeled data generated by
a rule-based system.

In the longer term, we envision a decoder with
constraints, which enforces that the generated rules
follow correct Odin syntax. We plan to include
constraints as part of decoding to aid in rule syn-
thesis. For example, in the Odin language, brackets
must be paired to produce syntactically valid rules.
This can be enforced with different strategies in
the decoder, ranging from constrained greedy de-
coding to globally optimal solutions that could be
implemented with integer linear programming. We
suspect that including such validity constraints will
further improve the quality of the decoded rules.

Further, we plan to use this decoder in an iter-
ative, semi-supervised learning scenario akin to
co-training (Blum and Mitchell, 1998). That is,
the newly decoded, executable rules can be applied
over large, unannotated texts to generate new train-
ing examples for the event classifier.

Acknowledgments
This work was supported by the Defense Advanced
Research Projects Agency (DARPA) under grant
#W911NF1810014. Mihai Surdeanu and Gus
Hahn-Powell declare a financial interest in lum.ai.
This interest has been properly disclosed to the Uni-
versity of Arizona Institutional Review Committee
and is managed in accordance with its conflict of
interest policies.

References
Avrim Blum and Tom Mitchell. 1998. Combining la-

beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory, pages 92–100. ACM.

Phil Blunsom, Oana-Maria Camburu, Thomas
Lukasiewicz, and Tim Rocktäschel. 2018. e- snli:
Natural language inference with natural language
explanations.

Zhengping Che, Sanjay Purushotham, Robinder Khe-
mani, and Yan Liu. 2016. Interpretable deep models
for icu outcome prediction. In AMIA Annual Sym-
posium Proceedings, volume 2016, page 371. Amer-
ican Medical Informatics Association.

Mark Craven and Jude W Shavlik. 1996. Extracting
tree-structured representations of trained networks.
In Advances in neural information processing sys-
tems, pages 24–30.

Nicholas Frosst and Geoffrey Hinton. 2017. Distilling
a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784.

Gus Hahn-Powell, Dane Bell, Marco A. Valenzuela-
Escárcega, and Mihai Surdeanu. 2016. This before
that: Causal precedence in the biomedical domain.
In Proceedings of the 2016 Workshop on Biomedi-
cal Natural Language Processing, pages 146–155.
Association for Computational Linguistics.

Lisa Anne Hendricks, Zeynep Akata, Marcus
Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor
Darrell. 2016. Generating visual explanations. In
European Conference on Computer Vision, pages
3–19. Springer.

Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori.
2013. The genia event extraction shared task, 2013
edition-overview. In Proceedings of the BioNLP
Shared Task 2013 Workshop, pages 8–15.

Zachary C Lipton. 2016. The mythos of model inter-
pretability. arXiv preprint arXiv:1606.03490.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144. ACM.

Marco A. Valenzuela-Escárcega, Özgün Babur, Gus
Hahn-Powell, Dane Bell, Thomas Hicks, Enrique
Noriega-Atala, Xia Wang, Mihai Surdeanu, Emek
Demir, and Clayton T. Morrison. 2018. Large-scale
automated machine reading discovers new cancer
driving mechanisms. Database: The Journal of Bio-
logical Databases and Curation.

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell,
and Mihai Surdeanu. 2016. Odin’s runes: A rule
language for information extraction. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation. LREC.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Hai Ye, Xin Jiang, Zhunchen Luo, and Wenhan Chao.
2018. Interpretable charge predictions for criminal
cases: Learning to generate court views from fact
descriptions. arXiv preprint arXiv:1802.08504.

https://doi.org/10.18653/v1/W16-2920
https://doi.org/10.18653/v1/W16-2920
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1093/database/bay098
https://doi.org/10.1093/database/bay098
https://doi.org/10.1093/database/bay098
http://www.lrec-conf.org/proceedings/lrec2016/pdf/32_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/32_Paper.pdf

