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3Source: Nelson, et al. Effects of poverty on interacting biological systems underlying child development. The Lancet Child & Adolescent Health
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Publications indexed by PubMed each year since 1995
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If humans cannot keep up, machines must help!



•We implemented a machine reading system 
focused on influence statements in children’s 
health literature
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Previous Work: Influence Search

1. Large-scale automated reading with Reach discovers new cancer driving mechanisms. 
2. Swanson linking revisited: Accelerating literature-based discovery across domains using 

a conceptual influence graph.



Influence Search
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Use Case
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Constructed in 2 days (human + machine);

Normally, it takes 1 month (human alone).

Model courtesy of: Lyn Powell, HBGDki-qPM team
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Motivation



Past vs. Future

•This system can only search past, published facts

•No information about what comes next in science…
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Definition

•White spaces in science
+ Topics that are insufficiently studied, but
+ May lead to important scientific discoveries
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Our Contributions

1. White space discovery = link prediction over the influence 
graph

• Predict whether an influence link will be added to the graph
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reduces
reducesdietary

fish oil 
blood 

viscosity
promotes Reynaud’s 

disease

• Binary classification task: 

• positive, if the influence relation will be added to the 
influence graph in the future;

• negative, otherwise

Swanson, D.R. Undiscovered public knowledge. The Library Quarterly, 56 (2), 1986.
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Our Contributions

2. Features from multiple graphs!
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Citation graph (to understand 
community overlap)Influence graph (to understand 

influence connectivity)
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Dataset



Complication: No "Back to the Future"
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Dataset
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Constructed through backtesting

? >= t

“fish oil”

“blood viscosity”

“Raynaud’s disease”
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t <= r3.year <= present (Positive)

r3 not exist until present (Negative)

Dataset



Note: Transitivity Generally Not True!
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Hurricane

Rainfall

Crop
yield

Missing information impacts non-linear models!
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t = 2012

Dataset



Features

•Extracted from two graphs

• Influence graph (influence relations between concepts)
• 1,564,748 distinct nodes
• Connected by 2,395,944 influence relations

•Citation graph (citations between papers)
• 119K papers
• 5,523,759 citation links
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Feature groups

Feature Group Intuition From
Connectivity 
features

The more connected concepts are, the easier 
is to discover a relation between them

influence
graph

Community-
based features

The larger the intersection of communities 
containing the two influence statements, the 
easier it is to make the connection

citation
graph

Information 
retrieval 
features

The more distinct a concept or an influence 
statement is, the harder it is to make a 
discovery around it

papers
containing
influence
statements
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Community-based Features
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The communities were detected using the Coda algorithm (Yang et al., 2014)
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Community-based Features
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Information Retrieval Features

• Inverse document frequency (IDF) score of lemmas in concept A
• IDF score of lemmas in concept B
• IDF score of lemmas in concept C

• Number of papers that mention A B 
• Number of papers that mention B C
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Evaluation



Evaluation Metrics
•
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Results
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All Feature Groups Help

F1 scores for feature ablation



What Does the System Predict?
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Conclusions

•Novel strategy for the identification of white spaces in 
scientific knowledge 

•Operates over real-world graphs of influence relations and 
citations

• F1 score of 27 points, and a mean average precision of 68% 

• Important to
Researchers: “What should I research next?”
Program officers: “What should I fund next?”
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Thank you!
Resource Available:
• Data and code

https://github.com/clulab/releases/tree/master/textgraphs2018-discovery

• Influence search engine
http://influence.clulab.org/

Fan Luo, Marco Valenzuela-Escárcega, Gus Hahn-Powell, Mihai Surdeanu
{fanluo, marcov, hahnpowell, msurdeanu}@email.arizona.edu
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https://github.com/clulab/releases/tree/master/textgraphs2018-discovery
http://influence.clulab.org/
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